

IFC[®] Chapter 5306: Medical Gases

2018 Washington State Fire Prevention Institute Chelan, Washington

YOUR INSTRUCTOR

Rob Neale, MA, CFPS Principal Integra Code Consultants

Former:

Vice President: National Fire Service Activities International Code Council

Deputy Superintendent: Curriculum and Instruction US National Fire Academy

Fire Chief Lynden - Fire District No. 3, Washington

Fire Marshal/Building Services Manager Bellingham Fire Department, Washington

GOAL

Improve your understanding of the 2018 International Fire Code[®] permitting, design, installation and inspection requirements for medical gases and NFPA Category I gas systems required by IFC[®] §5306.

YOUR QUESTIONS

What specific questions do you have about medical gas systems?

With the person sitting next to you, create a list of five (5) locations where you are likely to find medical gas systems.

PRESENTATION OBJECTIVES

Upon completion, you will be able to outline the International Fire Code[®] requirements for medical gas systems.

To accomplish this, you will be able to:

- 1. Explain the International Fire Code[®] construction and operating permit requirements for medical gases and systems, including acceptance testing and commissioning.
- 2. Identify medical gas cylinders and their capacities.
- 3. Identify medical gas system components.

PRESENTATION OBJECTIVES (CONTINUED)

Upon completion, you will be able to outline the International Fire Code[®] requirements for medical gas systems.

To accomplish this, you will be able to:

- 4. Interpret line drawings of simple medical gas systems to verify components are installed correctly.
- 5. Summarize construction requirements for interior and exterior one-hour rooms for medical gas storage.
- 6. Apply the requirements of IFC[®] Chapter 53 for medical gases to plan review and inspections.

MODULE # I

MEDICAL GAS OVERVIEW

IFC[®] DEFINITIONS

§ 5302.1

Compressed gas

- Material or mixture that:
 - Is a gas at 68°F or less at 14.7 psia of pressure; and,
 - Has a boiling point of 68°F or less at 14.7 psia which is either liquefied, nonliquefied or in solution,
 - <u>except</u> those gases which have no other healthor physical-hazard properties are not considered to be compressed until the pressure in the packaging exceeds 41 psia at 68°F.

IFC[®] DEFINITIONS

Compressed gas container

A <u>pressure vessel</u> designed to hold compressed gases at pressures greater than one atmosphere at 68°F and includes cylinders, containers and tanks.

Compressed gas system

An <u>assembly of equipment</u> designed to contain, distribute or transport compressed gases. It can consist of a compressed gas container or containers, reactors and appurtenances, including pumps, compressors and connecting piping and tubing.

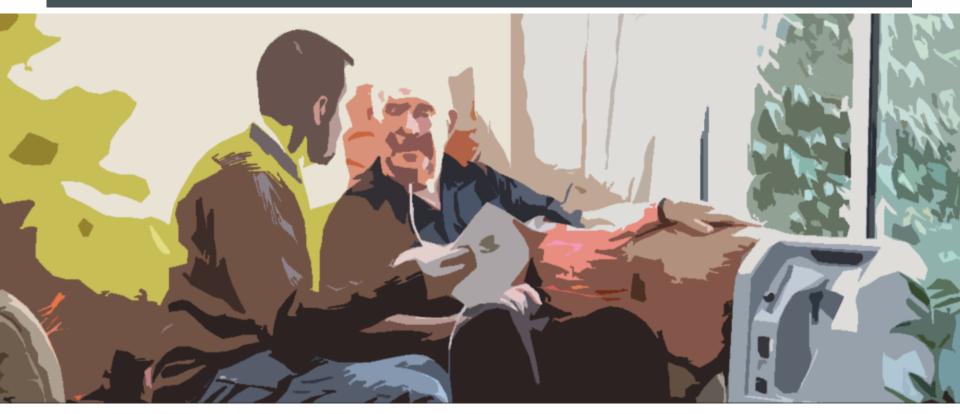
WASHINGTON REGULATIONS

RCW 18.06

Department of Labor and Industries

Journeyman plumbers with "medical gas piping installation endorsement"

WAC 296-400A-026

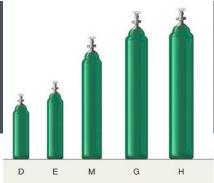


Source: http://www.lni.wa.gov/LawRule/default.asp

LOX IN HOME HEALTH CARE

MEDICAL GASES

- Medical air
- Nitrous oxide
- Nitrogen
- Carbon dioxide
- Medical gas mixtures
- Instrument air/surgical air
- Medical vacuum
- Waste anesthesia gas disposal (WAGD)
- Anesthetic gas scavenging system (AGSS)


Gas	Common Usage		
Oxygen	Supplemental oxygenation for hypoxemia and hypoxia		
Nitrous Oxide	Analgesic and anesthetic for pre-operative procedures		
Nitrogen	Power surgical equipment during various procedures		
Carbon dioxide	Suspend or inflate various tissues. Used in laser surgeries		
Carbon monoxide	Trace amounts as ingredient in lung diffusion testing		
Medical air	Pulmonary nebulizers to reduce the risk of excess oxygen in the lungs or other body tissues		
Helium	Fixed partial upper airway obstructions or increased air resistance		
Medical vacuum	Suction equipment and evacuation procedures		
Instrument air	Powers pneumatic surgical equipment		

Medical Gas/Fluid Hazards		
Gas/Fluid	Hazard	
Oxygen, nitrous oxide	Oxidizer	
Nitrogen, carbon dioxide, nitrous oxide	Asphyxiant	
Carbon monoxide	Flammable	
Medical air	Compressed gas (pressure)	
Helium	Asphyxiant	
Instrument air	Compressed gas (pressure)	
Cryogenic fluids	Tissue and respiratory damage	

GAS: OPERATING/CONSTRUCTION PERMITTING

Table 105.6.9 Limits		
Gas	Amount (cu.ft.) at NTP	
Corrosive	200	
Flammable	200	
Highly toxic	Any	
Inert and simple asphyxiant	6,000	
 Nitrogen, carbon dioxide, nitrous oxide 		
Oxidizing (including oxygen)	504	
Pyrophoric	Any	
Toxic	Any	

INTEGRA CODE CONSULTANTS

VESSEL CAPACITIES (CU. FT.)

Pure Gas	Cylinder Color	D	E	Μ	G	н
Oxygen USP		13	22	112	188	226
Medical Air USP		13	22	106	179	213
Nitrous Oxide USP		32	53	263	488	555
Nitrogen NF		12	21	104	174	209
Helium USP		12	20	99	186	199
Carbon Dioxide USP		31	54	263	430	555

SYSTEM EQUIPMENT AND COMPONENTS

MODULE # 2

RISK CATEGORIES (NFPA 99, §4.1)

Activities, systems or equipment where failure:

Category I	is likely to cause major patient, staff or visitor death/injury.	
Category 2	is likely to cause <i>minor</i> patient, staff or visitor death/injury.	
Category 3	not likely to cause injury, but will cause discomfort.	
Category 4	has no impact on patient care.	

RISK CATEGORIES (NFPA 99, §A- 4.1)

Reliability:

Category I	• Expected to work or be available at all times for patients
Category 2	 Expected to provide a high level or reliability Short term downtime can be tolerated Support patients but not critical for life support
Category 3	 Normal building system reliabilities are expected Support patient needs but not patient care
Category 4	No impact on patient care.

RISK CATEGORIES (NFPA 99, §A-4.1)

Examples:

Category I	 Ambulatory surgical center Two patients with full operating room services Reconstructive surgeons' office
Category 2	 Outpatient service procedure sedation Cooling towers: Houston
Category 3	 Cooling towers: Seattle Dental office; no general anesthesia
Category 4	Typical physician office/exam roomLawn sprinkler systems

CENTRAL SUPPLY: KEY REQUIREMENTS

- Central supply sources must be identified and labeled
- Warning signs for oxygen and other medical gases
- Central supply conditions
 - Outdoor enclosures
 - Indoor enclosures

MANIFOLD W/O RESERVE SUPPLY

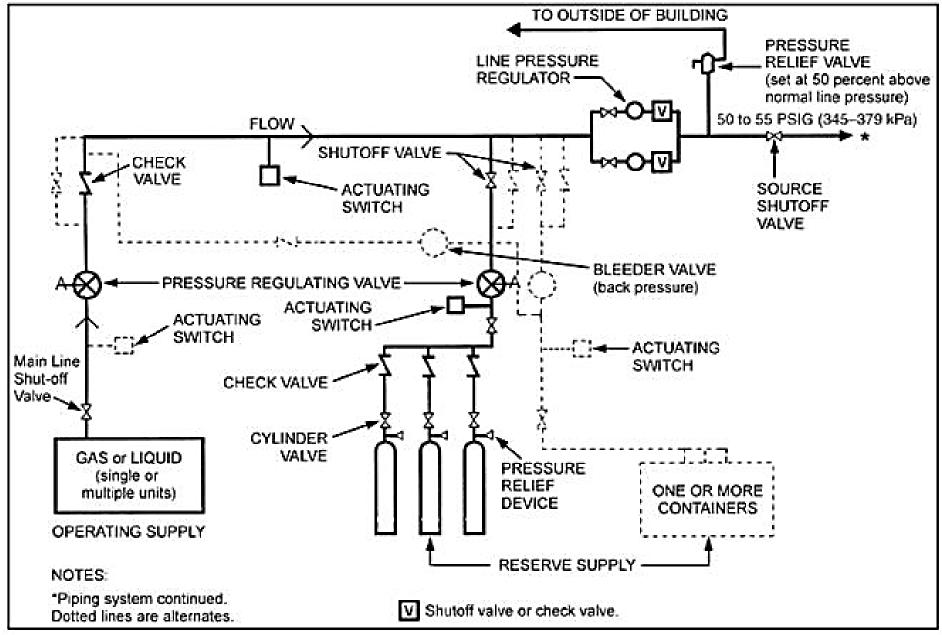
- Source redundancy
- Automatic changeover

Alarms

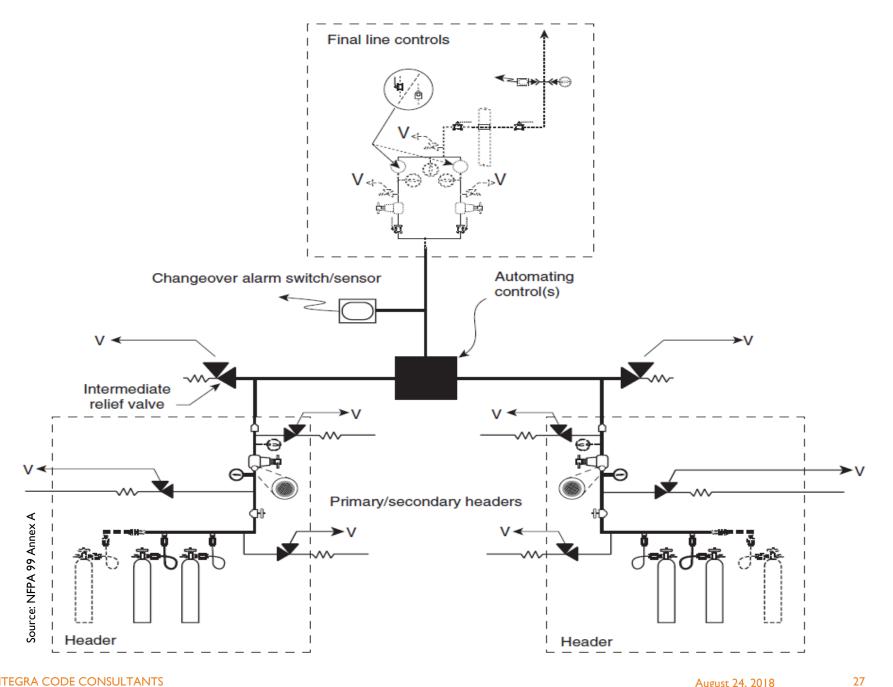
- Local visual
- Remote master indicating changeover

SIGNS

99-§5.1.3.1.8 Rooms for positive pressure gases other than oxygen and medical air:


Positive Pressure Gases NO Smoking or Open Flame Room May Have Insufficient Oxygen Open Door and Allow Room to Ventilate Before Entering

SIGNS


99-§5.1.3.1.9 Rooms for central supply for *only* oxygen or medical air:

Medical Gases NO Smoking or Open Flame

CAUTION: OXIDIZING GAS(ES) STORED WITHIN NO SMOKING

Courtesy Gentec Systems Corporation

HEADERS (NFPA 99-§ 5.1.3.5.9)

Check valve Pressure gauge Regulator V < Filter Shutoff valve Source: NFPA 99 Annex A Vent to outdoors Header

MATERIALS

Courtesy Advanced Technology Group

DISTRIBUTION/VACUUM

Distribution (pressure)

Copper, Type L

- ASTM B 819 Standard Specification for Seamless Copper Tube for Medical Gas Systems
- Туре К
 - Pressures exceed 185 psi and tube is larger than 3^{1/8}-inch OD.
- Vacuum (suction)
 - Copper
 - Stainless steel

K OR L: WHAT'S THE DIFFERENCE?

Wall thickness

Outside Diameter (in.)	Туре К	Type L
3/8	.049	.035
5/8	.049	.042
3/4	.065	.045
I	1.125	.050

Courtesy Alibaba

MARKING

Courtesy Alibaba

ASTM B819

Pressure side

Type L	Туре К
OXY	OXY
OXY/MED	OXY/MED
OXY/ACR	OXY/ACR
ACR/MED	ACR/MED
MED	MED

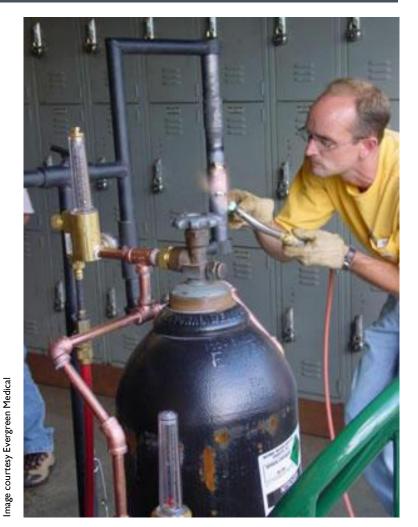
Vacuum side

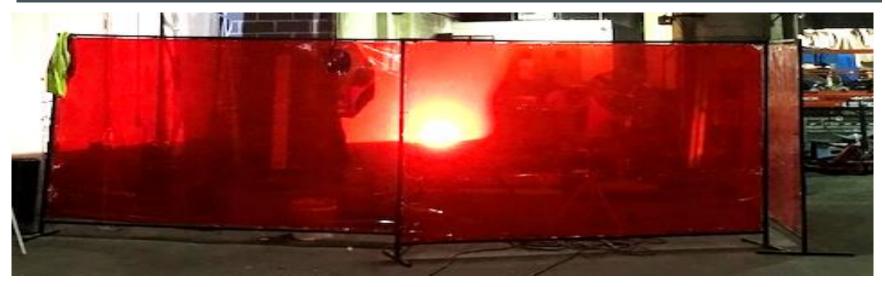
- "Prominently labeled"
- Exception for B819-compliant tube

DISTRIBUTION PIPE

- Equipped with isolation valvesPiped in parallel *optional*
- Pressure relief valves
 - Vented outdoors
 - Away from hazards

BRAZING CONTROLS


- When brazing joints, must be continuously purged with oil-free dry nitrogen NF (national formulary)
 - Prevents copper oxide inside joint surfaces


POST-BRAZING CHECK (NFPA 99- § 5.1.10.4.7)

- Washed with water and wire brush
- Visually inspected
 - Reject if:
 - Flux or flux residue
 - Base metal melted or eroded
 - Unmelted filler material
 - Filler metal not visible around entire joint
 - Cracks in tube or joint
 - Cracks in braze filler metal
 - Joint fails pressure test

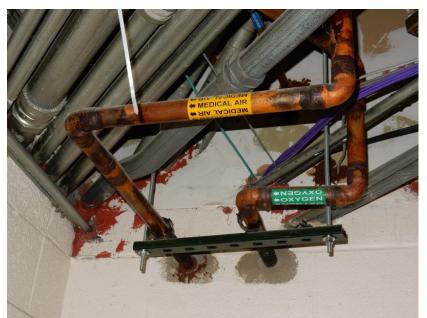
INTEGRA CODE CONSULTANTS

WELDING: SUCTION PIPE

- Welding joins metals by melting and fusing them together, usually with the addition of a welding filler metal.
- Joints produced are strong, usually as strong as the metals joined or even stronger.

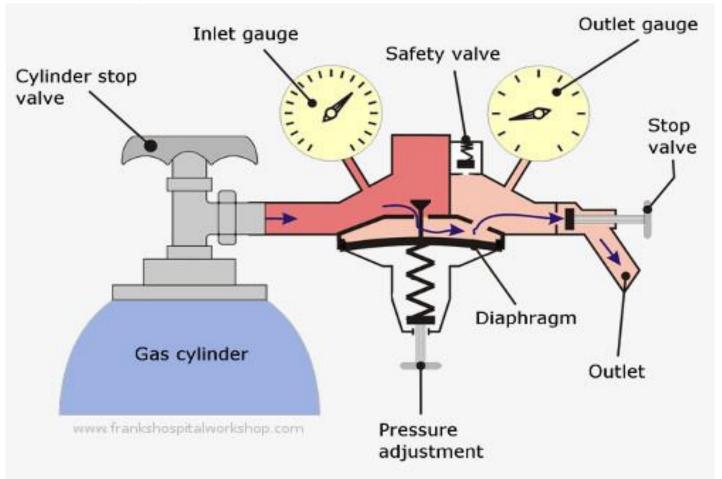
WELDING RESTRICTIONS

- Vacuum systems
- Gas-tungsten arc welding with orbital device
- Welder qualifications
 - ASME Boiler and Pressure Vessel Code



Courtesy Westermans International

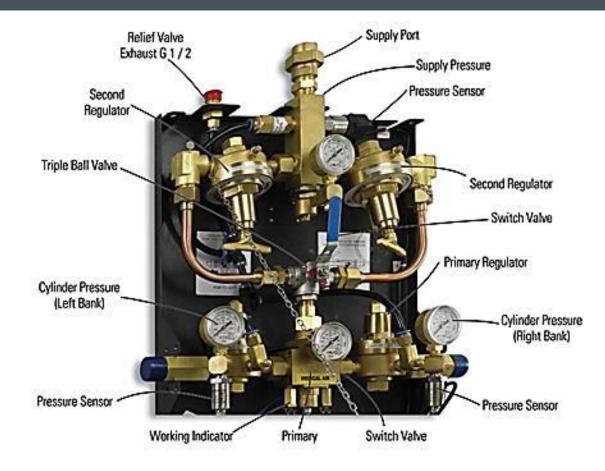
PIPE SUPPORT (NFPA 99- § 5.1.10.11.4)

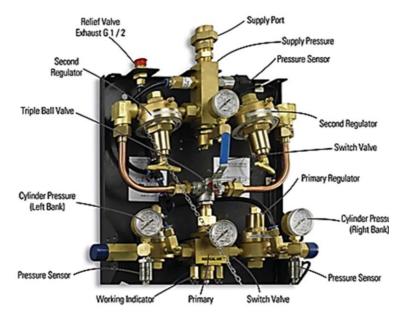

Supported from building structure

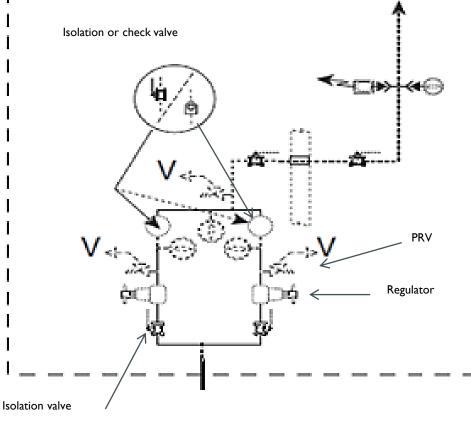
Pipe Support Spacing Limits				
Pipe Size				
Diameter Nominal (DN)	Nominal Pipe Size (in.)	Outside Diameter (in.)	Hanger Spacing (ft.)	
DN 8	۱⁄4	3/8	5	
DN 10	3/8	1/2	6	
DN 15	1/2	5/8	6	
DN 20	3/4	7/8	7	
DN 25	I	/8	8	
DN 32	1/4	I 3/8	9	
DN 40 +	1/2	I 5/8	10	
Risers (all sizes)	Every floor, but not to exceed 15 feet			

VALVES

Final line pressure regulators


RELIEF VALVES


Vented to exterior


- Exception: compressed air at <3,000 ft³ at STP
- Discharge capacity at least equal to relief outlet
 - If two or more, not less than aggregate cross section of all vents
- Vent to non-hazardous locations
- Vent outlet turned downward
- Meet ASME B31.2 Pressure Process Piping

MANIFOLDS

"FINAL LINE CONTROLS"

Source: NFPA 99 Annex A

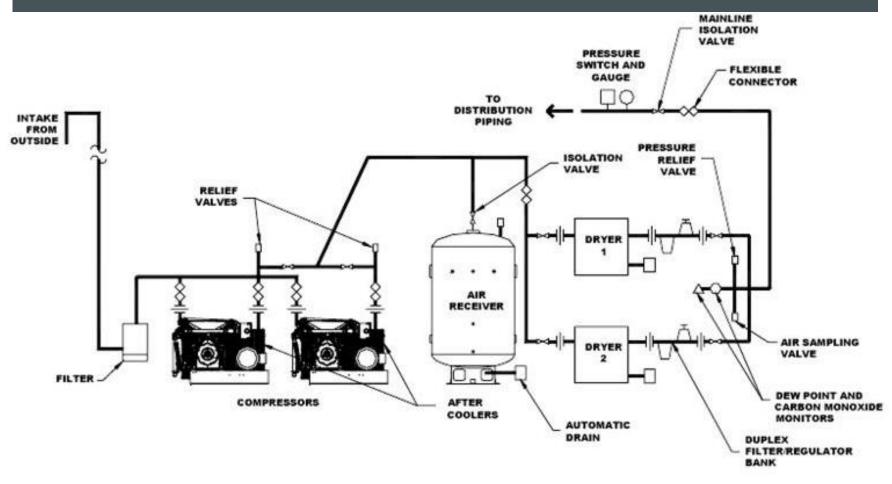
MEDICAL AIR

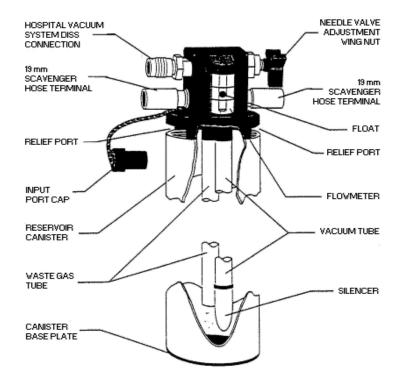
Human respiration and device calibration only

Equipment

- Compressors
- Air drying equipment
- Medical gas receiver

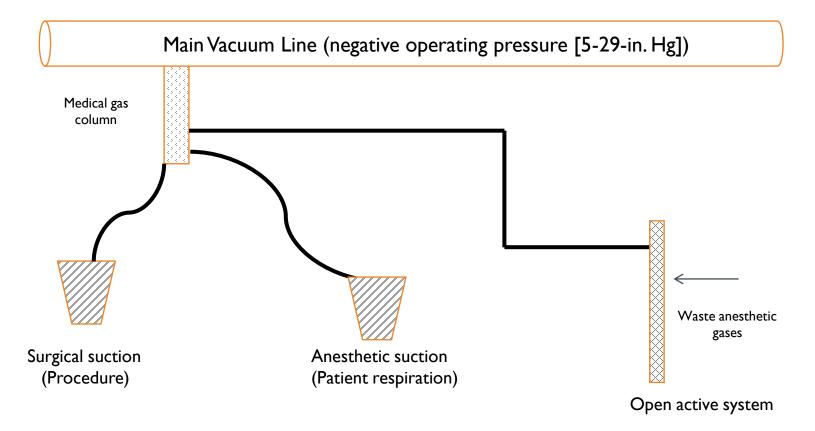
DEHUMIDIFIER


INSTRUMENT AIR


Medical devices unrelated to respiration:

- Surgical saws
- Drills
- Reamers

INSTRUMENT AIR



VACUUM/SUCTION

ANESTHETIC GAS SCAVENGING

WASTE ANESTHETIC GAS DISPOSAL

- Collects waste gases and exhaust to outdoors
 - Operational redundancy required
 - Equipment installed to avoid pressure drops

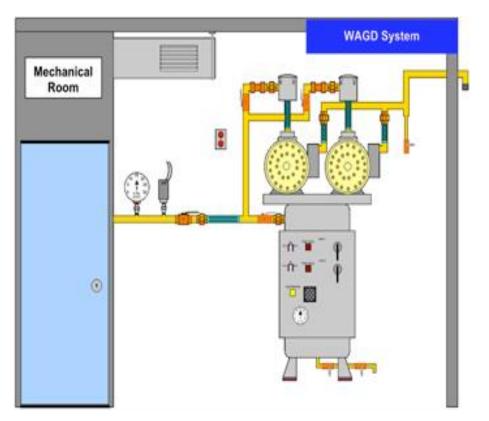



Image courtesy MGC (Medical Gas Certifications)

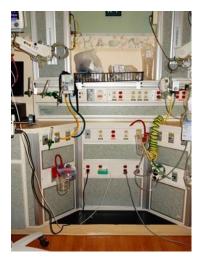
EMERGENCY CONTROL VALVES

- Source
 - Main line
 - Where enters building
 - Riser
 - Each riser from mainline
- Service
 - Allow service or modification of lateral branch lines
 - Behind locked door
 - Above ceiling
 - Locked open in secure area

ZONEVALVES

Immediately outside:

- Vital life-support area
- Critical care area
- Moderate, deep sedation area
- General anesthesia area
- Placed in wall
 - Serve only outlets/inlets on same story
 - Not located in room with outlets/inlets it controls



PATIENT DISTRIBUTION OUTLETS

INTEGRA CODE CONSULTANTS

INTEGRA CODE CONSULTANTS

August 24, 20**58**

BUILDING CONSTRUCTION

MODULE # 3

MEDICAL GAS SYSTEM LIMITS

NFPA 99-§ 5.1.3.5.2

Central supply permitted to be piped only for gases used under direct medical supervision for:

- Direct patient care
- Medical devices for respiration
- Power for patient medical devices
- Calibration for these items

mage courtesy GE Healthcare

LOCATIONS (NFPA 99- §5.1.3.3.6)

Indoor central supply locations for oxygen and nitrous must <u>not</u> communicate with:

Critical patient care areas (ICU/CCU/ER)

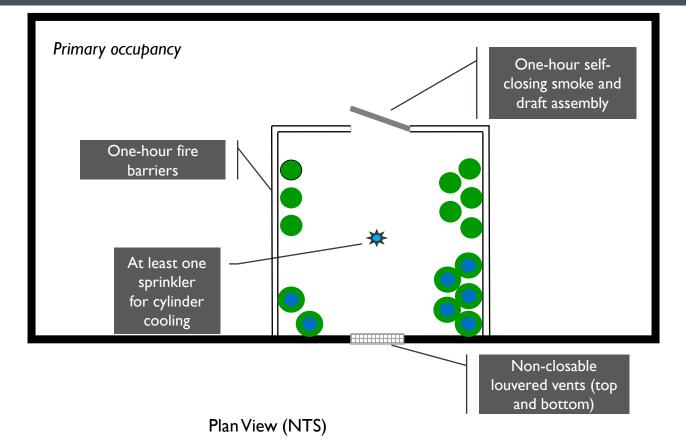
- Anesthetizing areas
 - Deep, moderate or general sedation
 - Locations storing flammables
- Flam/com liquid storage tanks
- Rooms with open electrical contacts or transformers
- Engines
- Kitchens
- Areas with open flames

GENERAL ENVIRONMENT

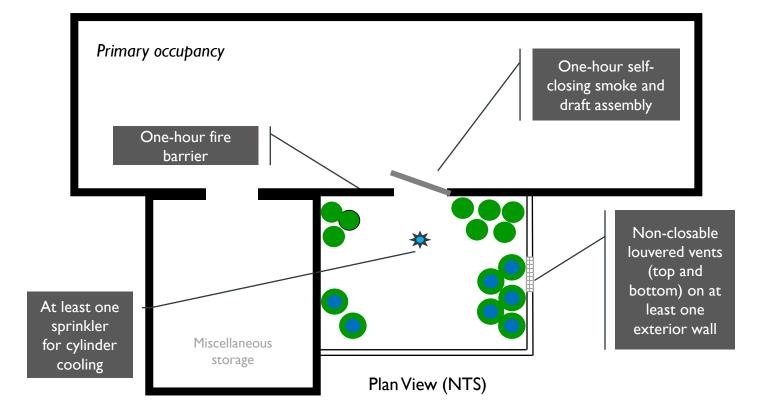
- Access by delivery vehicles and for cylinder management
- Temperature control < 130°F
 - Indirectly heated (steam/ hot water)
 - Nitrous and carbon dioxide not lower than -20°F
- Lockable doors or gates
- Electrical Code compliance
- Warning signs

mage courtesy of O.E. Mayer Co.

GAS CABINETS IFC[®]§ 5306.2.3


See § 5003.8.6

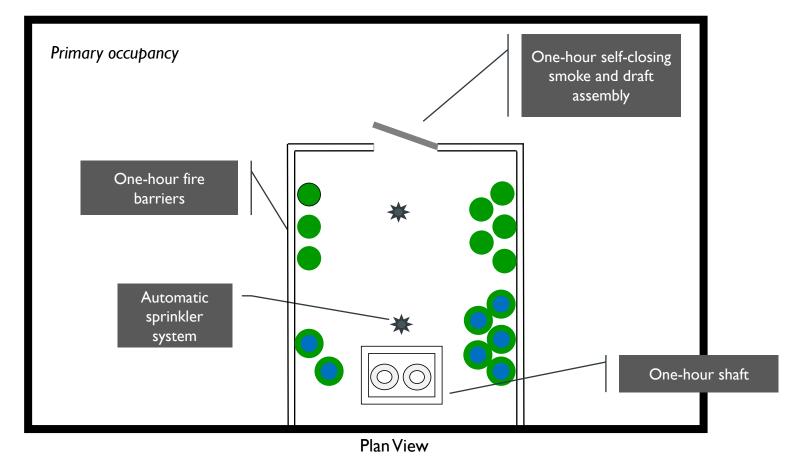
- Not less than 0.097-inch (12-gage) steel
 - Self-closing limited access ports or non-combustible windows
 - Self-closing doors
 - Interior compatible with stored products
 - Negative pressure ventilation
- Average velocity across access ports or windows not less than 200 fpm with not less that 150 fpm at any point
- Connected to exhaust system
- Internally sprinklered

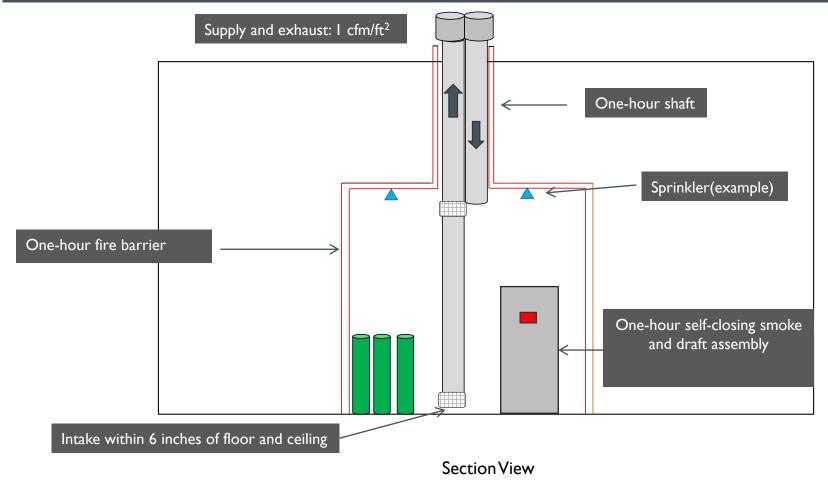


ONE-HOUR EXTERIOR ROOM § 5306.2.1

ONE-HOUR EXTERIOR ROOM § 5306.2.1

OPEN LOUVERED VENTS § 5306.2.1


Elevation View (NTS)


Q: Client wants to store 12,000 ft³ of oxygen in exterior storage room. What is minimum area of each vent, in square inches?

A:

ONE-HOUR INTERIOR ROOM § 5306.2.2

ONE-HOUR INTERIOR ROOM § 5306.2.2

Q: Client wants to build a 12 x 12-foot one-hour interior room for 3,000 ft³ of oxygen, nitrogen and nitrous oxide. What is the minimum total exhaust rate required for the room?

A:

SPRINKLER PROTECTION

Exterior rooms §5306.2.1

- "Rooms shall be provided with not less than one automatic sprinkler to provide container cooling in case of a fire."
- Interior rooms §5306.2.2
 - "An automatic sprinkler system shall be provided for the room."

Discussion

SPRINKLER PROTECTION

In an otherwise unsprinklered building with a 100 sq. ft. interior medical gas storage room

What minimum sprinkler design criteria would you allow

Why?

OUTDOOR LOCATIONS

■ IFC § 6304.2.1

Gas Quantity (ft ³ /NTP)	Distance to Building Not Associated with Distribution; Public Way or Buildable Lot Line (feet)	Distance Between Storage Areas (feet)
0-50,000	5	5
50,001-100,000	10	10
100,001 or more	10	10

Note: Distances do not apply where two-hour fire barriers without openings or penetrations interrupt line of sight between storage and exposure.

INTEGRA CODE CONSULTANTS

August 24, 20**70**

INSPECTION, COMMISSIONING AND MAINTENANCE

MODULE # 4

ACCEPTANCE/COMMISSIONING (CONTRACTOR)

Pipe blowdown

Oil-free dry nitrogen NF (non-flammable)

Initial pressure test

- I.5 times system operating, but not less than 150 psi
- All joints leak tested (safe for use with O₂ does not contain NH₃)

Image courtesy Evergreen Medical

COMMISSIONING (CONTRACTOR)

Initial cross-connection test

Each line tested individually

Initial pipe purge

No discoloration of clean white cloth

COMMISSIONING (CONTRACTOR)

Standing vacuum test

24-hour standing vacuum test between 12 inches and full vacuum

VERIFICATION (THIRD PARTY)

mage courtesy SC Medical

Image courtesy Evergreen Medica

- Standing pressure
- Cross-connection
- Alarms
- Pipe purge
- Pipe particulates

INSPECTION/MAINTENANCE (IFC[®] § 5306.5)

NFPA 99-5.1.14.2

- Risk-assessment based inspection and maintenance schedule and procedures
 - Manufacturer's recommendations
 - Code official's requirements
- Minimum one-year frequency recommended

INSPECTION – TESTING - MAINTENANCE

- Medical air source
 - Room temperature
 - Filter condition
 - Presence of contaminants
 - Room ventilation and air intake
 - Air purity
 - Exhaust locations

Manifolds

- Ventilation
- Labeling
- Valve labeling
- Alarms and warning systems
- Each station outlet/inlet
 - **Flow**
 - Labeling
 - Leaks

Should a maintenance plan be a condition of the IFC[®]- required operational permit?

SUMMARY

- I. Explain the International Fire Code[®] construction and operating permit requirements for medical gases and systems.
- 2. Interpret line drawings of simple medical gas systems to verify components are installed correctly.
- 3. Summarize construction requirements for interior and exterior one-hour rooms for medical gas storage.
- 4. Interpret line drawings of simple medical gas systems to verify components are installed correctly.
- 5. Summarize construction requirements for interior and exterior one-hour rooms for medical gas storage.
- 6. Apply the requirements of IFC[®] Chapter 53 for medical gases to plan review and inspections.

QUESTIONS/COMMENTS?

THANK YOU FOR YOUR PARTICIPATION

INTEGRA CODE CONSULTANTS

August 24, 2018

79

COPYRIGHT MATERIALS

This presentation is protected by US and International copyright laws.

Reproduction, distribution, display and use of the presentation without the speaker's written permission is prohibited.

© Integra Code Consultants 2018

For permission, contact Integra Code Consultants

2541 Island Grove Boulevard Frederick, MD 21701 301.524.6591 Email: Rob@IntegraCC.com

INTEGRA CODE CONSULTANTS

August 24, 2018