RUTGERS Ernest Mario School of Pharmacy

Background

- Treating patients with COVID-19 has presented multiple challenges to practitioners, including high requirements for analgesia and sedation in mechanically ventilated patients and drug shortages
- Ketamine is an analgosedative agent that has generated more interest in recent years, but still has a limited body of evidence for its use as a sedative in critically ill patients in general, and certainly is lacking for patients with COVID-19
- In retrospective cohort studies evaluating ketamine as an adjunct for sedation, doses of other sedatives were decreased or did not increase when ketamine was initiated
- In these studies, no difference was reported in the rate of adverse events between patients who were initiated on ketamine and those who were not

Objective

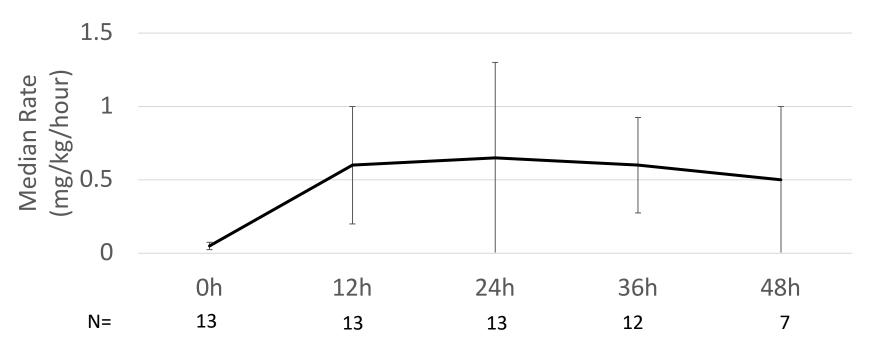
The objective of this study is to describe ketamine usage for sedation in mechanically ventilated adult patients with COVID-19

Methods

- This was a retrospective case series performed at Capital Health Regional and Hopewell Medical Centers from June to October 2020
- Inclusion criteria: 18 years or older, received ketamine infusion for at least 24 hours, SARS-CoV-2 positive, received at least one continuous infusion of a benzodiazepine, dexmedetomidine, propofol, or an opioid
- As this study was a case-crossover design, patients included in this study served as their own controls (figure 1)
- Primary outcome evaluated the percent relative change in dose of other sedatives and analgesics 48 hours after ketamine is initiated
- Secondary outcomes evaluated change in vasopressor requirements, change in oxygenation requirements, and time spent in goal RASS

Figure 1. Case-crossover study design

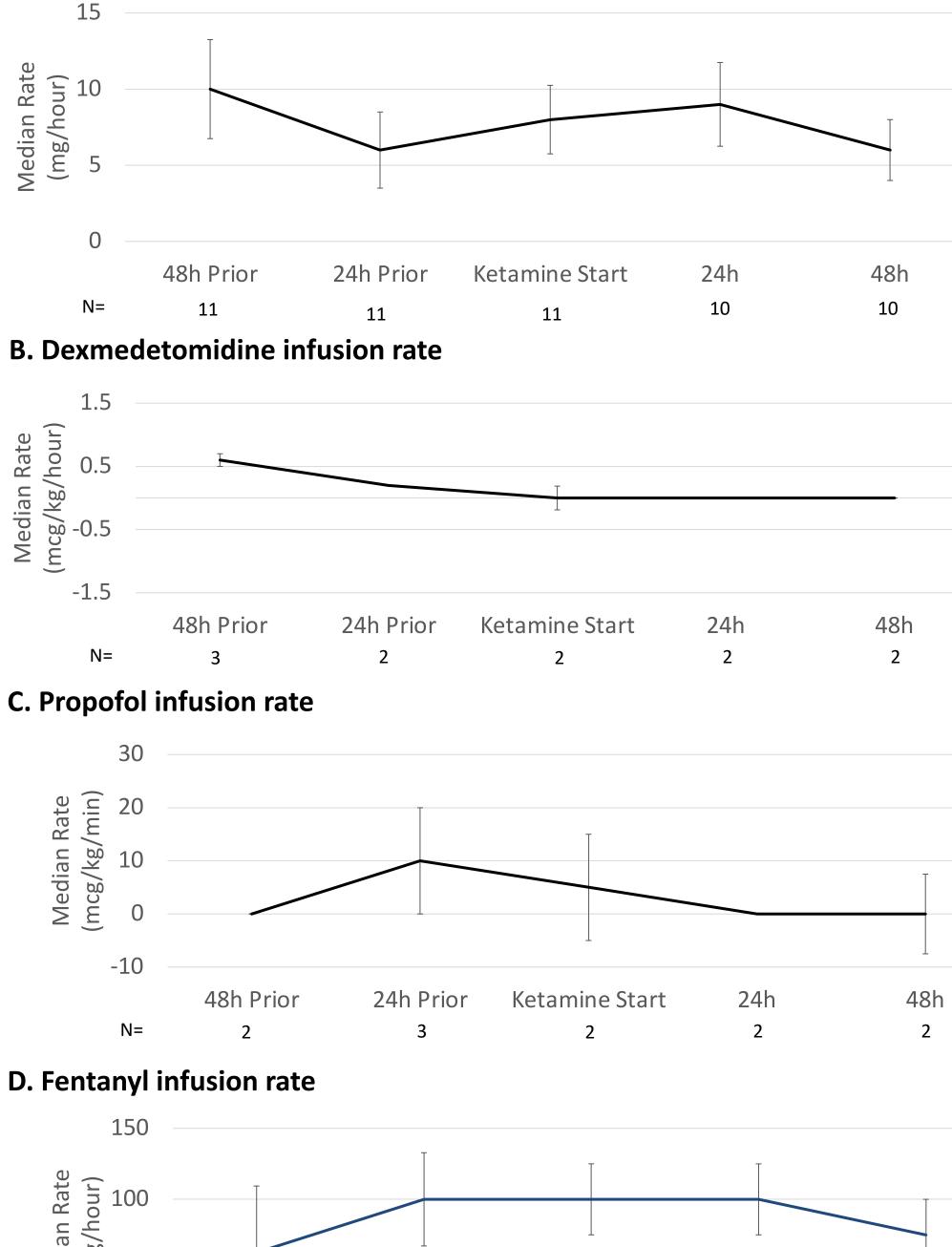
patient not on ketamine


Ketamine use in mechanically ventilated adult patients with COVID-19 Rachel Winner PharmD Candidate¹; Muhammad Effendi PharmD, BCCCP^{1,2}

1. Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey 2. Capital Health Regional Medical Center, Trenton, NJ

Results

Table 1. Baseline characteristics of inc	Figure 3. Me	
Characteristic	Value (Mean)	A. Benzodiaz
Age, years (SD)	58.38 (12.91)	15
Male, %	69	Q
Weight, kg (SD)	75 (25.37)	Median Rate (mg/hour) 5 01
Race/ethnicity (%)		ediar mg/h
White	31	Ψ L L
Black or African American	23	0
Hispanic	15	
Asian	8	N=
Unknown	23	B. Dexmedet
Comorbidities (%)		1.5 —
Hypertension	62	hou 6.0
Psychiatric History	31	Median Rat (mcg/kg/hou ; ; ; ;
Depression/Anxiety	31	Me (mcg
Bipolar Disorder	15	-1.5
Schizophrenia	8	N=
Other Psychiatric Disorder	0	C. Propofol i
Substance Use	0	30
COPD	8	
Asthma	31	s/mii
Pulmonary Hypertension	0	Median Rate (mcg/kg/min) 0 01 07
Initial SOFA Score	7.83 (2.23)	0 (H
Length of ICU Stay, days (SD)	27.31 (13.99)	-10
Length of Hospital Stay, days (SD)	31.54 (10.97)	N=


Figure 2. Median rate of ketamine infusion

150

50

Iedian infusion rates of adjunctive sedatives and analgesics azepine infusion rate

Ţ				
48h Prior	24h Prior	Ketamine Start	24h	48h
7	10	9	9	10

Percentage of

Percentage of

Vasopressor to units, mcg/mi

Ratio of PaO2

Adverse even

- Infusion rates of ketamine were not standardized and varied among patients Did not capture as needed doses of analgesics or sedatives

- nursing staff as well as inter-individual differences in drug responsiveness
- This could be due to variation in prescribing practices and practices of • Two patients were able to be extubated while on ketamine, demonstrating its potential utility in this scenario
 - Ketamine does not suppress respiratory drive, thus is has the niche potential to keep patients sedated during extubation
- Overall, ketamine may have the ability to decrease sedative requirements in mechanically ventilated patients with COVID-19, especially during extubation

Care Medicine. 2018;46(9):e825-e873

Muhammad Effendi | Muhammad.effendi@pharmacy.Rutgers.edu Authors of the presentations have the following to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation.

capitahealth **KNIGHTSCHOLAR**x

Results (continued)

Table 2. Secondary outcomes and adverse events

•		
Outcome	48 Hours Prior to Ketamine Initiation (Median)	48 Hours After Ketamine Initiation (Median)
f time spent in goal RASS, %	85.71	47.92
f time spent in goal MAP, %	93.75	93.75
total dose (norepinephrine in)	0	0
2:FiO2 (P/F Ratio)	145.13	151.17
nts, n (%)	-	4 (31)

Limitations

- Retrospective case series
- Small study population

Conclusions

• Ketamine initiation is generally associated with decreased sedation requirements, but this was not consistently observed in all of our patients

References

1. Zanos P, Moaddel R, Morris PJ, et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. *Pharmacol Rev.* 2018;70(3):621-660. 2. Heiberger AL, Ngorsuraches S, Olgun G, et al. Safety and Utility of Continuous Ketamine Infusion for Sedation in Mechanically Ventilated Pediatric Patients. J Pediatr Pharmacol Ther. 2018;23(6):447-454 3. Groetzinger LM, Rivosecchi RM, Bain W, et al. Ketamine Infusion for Adjunct Sedation in Mechanically Ventilated Adults. *Pharmacotherapy*. 2018;38(2):181-188. 4. Garber PM, Droege CA, Carter KE, Harger NJ, Mueller EW. Continuous Infusion Ketamine for Adjunctive Analgosedation in Mechanically Ventilated, Critically III Patients. Pharmacotherapy. 2019;39(3):288-296 5. Devlin JW, Skrobik Y, Gelinas C et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Critica

Author Contact Information