Fire Alarm Intelligibility and Occupant Notification Systems

FIRE MARSHALS

Who am I?

- John Swanson
- Deputy State Fire Marshal (MN)
- Previous member IBC Fire Safety
 Committee
- NFPA 72 Technical Committee
- Instructor for International Code
 Council and National Fire Academy
- Appointed by MN Gov. Mark Dayton to Board of Architecture & Engineering (2013)

Fire & Life Safety Interests...

• Fire Alarm Systems

Fire & Life Safety Interests...

• Fire Alarm Systems

School Fire Safety

Fire & Life Safety Interests...

• Fire Alarm Systems

• Autism/Fire & Life Safety

• School Fire Safety

Miscellaneous Information

- Restrooms
- Breaks
- Roster
- Informal
- Participate

Please ask questions

Gott

© 2000 Ted Goff www.tedgoff.com

"You're not allowed to use the sprinkler system to keep your audience awake."

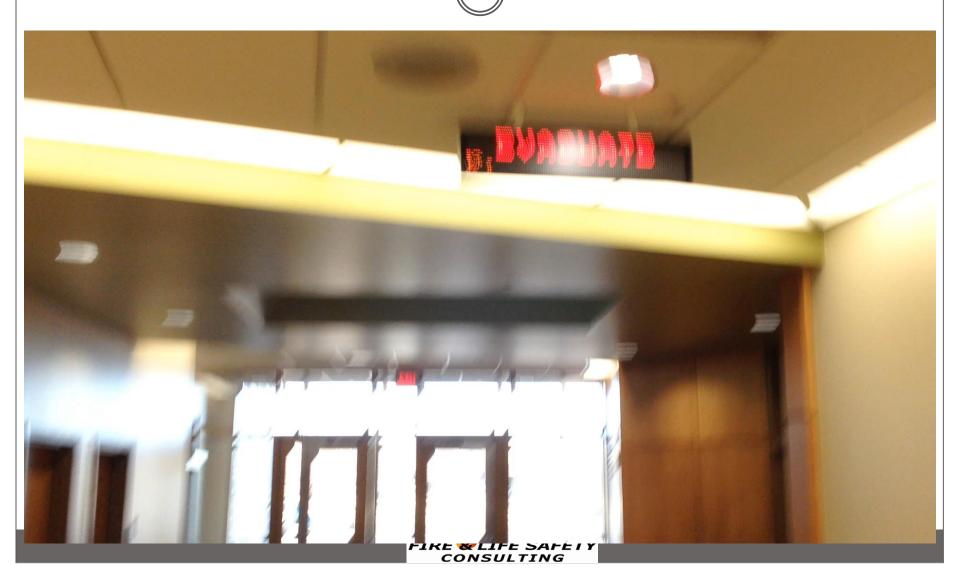
Introductions

- Please introduce yourself:
 - \circ Employer
 - Years of experience in the industry?
 - Years of experience dealing with/reviewing fire alarm systems?

- Introductions
- NFPA 72
 - $\bigcirc 2010 \longrightarrow 2013 \longrightarrow 2016$
- Emergency Voice Alarm Communication
 OIFC
 - ○Voice Intelligibility

Terminology

- Intelligibility The quality or condition of being intelligible [NFPA 72 (16): 3.3.134]
- Intelligible-Capable of being understood; comprehensible; clear [NFPA 72 (16) 3.3.135]


- Emergency voice alarm communication
 - System is multi-functional and can be used for various purposes including:
 - Emergency/Safety messages (severe weather, lockdown, etc.)
 - General paging
 - Background music

- Ancillary functions must not impair the required operation or function of the ECS system
 - ECS must take precedence over general paging, background music, etc.
 - Some systems allow remote access
 - Remote access must not impair normal system functions

- IBC/IFC require an emergency voice alarm communication system in the following occupancies:
 - OAssembly > 1,000 people

 IBC/IFC require an emergency voice alarm communication system in the following occupancies:

OHigh-Rise Buildings

- IBC/IFC allow the means of egress sizing (exit width) to be reduced when building is protected with an automatic sprinkler system <u>and</u> an emergency voice alarm communication system.
- Many design professionals are taking advantage of this new section.

Section 1005.3.1-Stairways

- The capacity of the means of egress shall be calculated by multiplying the occupant load by 0.3 inch/occupant.
 - Exception: For other than H and I-2, multiply the occupant load by 0.2 when building is protected with an automatic sprinkler system and an emergency voice alarm communication system is provided.

Section 1005.3.2-Other Egress Components

- IBC/IFC Section 1005.3.2 The capacity of the means of egress shall be calculated by multiplying the occupant load by 0.2 inch/occupant.
 - Exception: For other than H and I-2, multiply the occupant load by 0.15 when building is protected with an automatic sprinkler system and an emergency voice alarm communication system is provided.

Occupant Notification

- Emergency voice/alarm communication
 - System must be designed/installed in accordance with NFPA 72 (chapters 18 & 24)
 - Voice instructions must be approved by the fire code official
 - Default will produce pre-programmed voice instructions
 - Alternate languages may be necessary

Chapter 18 – Changes

- 18.4.10 Voice Intelligibility
- 18.4.10.1 Acoustically distinguishable spaces (ADS) are to be determined during design of a voice notification system.

 18.4.10.2 ADS shall be identified by the system designer as needing or not needing voice intelligibility.

Audibility vs. Intelligibility

• Audibility – Can you hear the signal?

• Intelligibility – Can you understand the signal?

System Classifications

- One-Way Emergency Communications Systems:
 - In-building ECS systems
 - In-building mass notification systems
 - Wide-area mass notification systems
 - Distributed recipient mass notification systems

System Classifications

- Two-way emergency communication systems:
 - Two-way in building wired emergency communication systems
 - Two-way radio communication enhancement systems
 - See IFC section 510 in 2012 IFC

O Areas of refuge systems

Elevator and stairway communication systems

System Classifications

 Voice evacuation messages shall be preceded and followed by a minimum of two cycles of the temporal 3 pattern (FIRE)

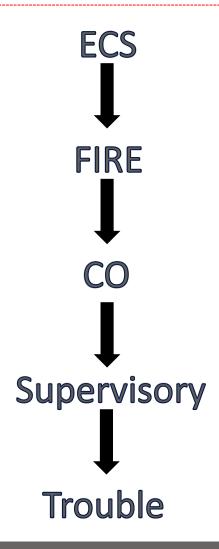
OTwo cycles of the temporal 4 pattern for CO

 In areas where sleeping accommodation is provided, the tone must be low frequency in the sleeping area.

Operating Controls

Controls for the ECS system shall be in a location approved by the AHJ

Operating Controls


 Controls shall be located in a secure area OR the panel must be kept locked to prevent unauthorized access and tampering

Signal Priority

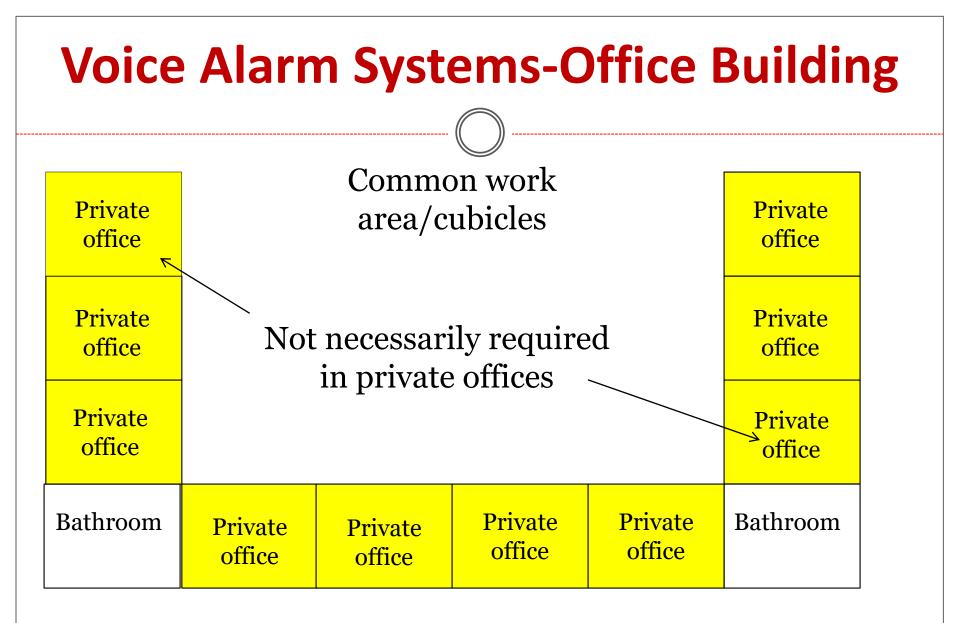
- Emergency communication systems, when approved, can take precedence over all other signals
 - Change occurred in 2010 edition of NFPA 72
 - Considered a significant change to how FIRE signals are treated in buildings

Voice Alarm Messages

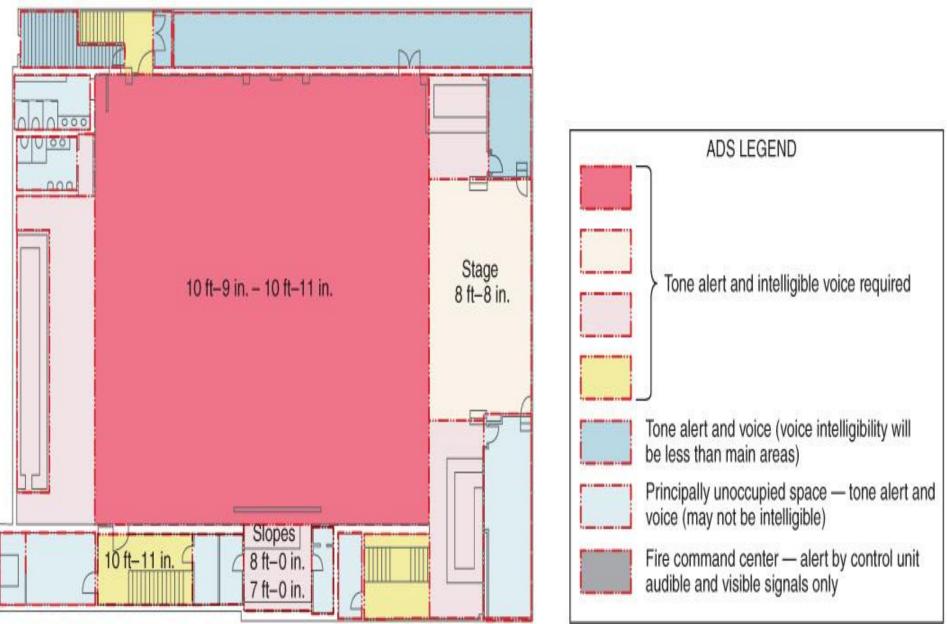
- Voice messages shall not be required to meet the audibility requirements for public mode signaling, but shall meet intelligibility requirements.
 - Chapter 14 does not require voice signals to be measured for audibility.
 - Sound produced from a voice system is modulated and a meaningful measurement cannot be determine.

Voice Alarm Systems

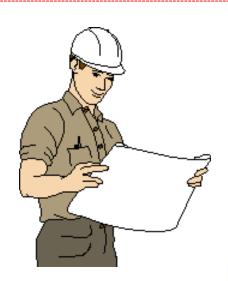
- Areas that may <u>not</u> require voice intelligibility (18.4.10.2.1):
 - \bigcirc Private office
 - Private bathrooms;
 - Mechanical/elevator equipment rooms or similar areas;
 - ○Elevator cars
 - OKitchen/storage rooms/closets


Voice Alarm Systems-Office Building

Private office	C	Private office				
Private office	bathrooi	orivate office, and d an "acoustically office ce" or ADS.				
Private office		0	1		Private office	
Bathroom	Private office	Private office	Private office	Private office	Bathroom	


Voice Alarm Systems-Office Building									
Private office		Private office							
Private office	Com Inte	Private office							
Private office		Private office							
Restroom	Private office	Private office	Private office	Private office	Restroom				

Voice Alarm – Nightclub Example



Voice Alarm Systems

- Voice systems, when required shall reproduce pre-recorded, synthesized, or life messages with voice intelligibility (NFPA 72: 18.4.10)
- Where no listed loudspeaker exists to achieve intelligibility, non-listed loudspeakers are permitted (24.3.1.2, 2016 edition)

Design Considerations

FIRE LIFE SAFETY

Design Considerations

- Acoustically distinguishable spaces (ADS) can be separated by zone or a portion thereof
- ADS can be distinguished by walls, different acoustics in a space, or the use characteristics of the space such as ambient noise levels

Design Considerations

- For smaller spaces in a building, usually defined as 400 sq. ft. or less, walls will define the ADS
- For spaces with moveable walls or partitions, each space shall be designed as a separate ADS

- For loud areas, typically areas with an ambient sound pressure level of 85 dBA or higher, voice intelligibility may not be possible.
- Other approved notification methods may be necessary

 \circ Strobes

OGraphic signs

- It is necessary for the designer to consult with the architect and interior designer to know what design features will be used in each ADS
- High ceiling areas may need to be treated differently than lower ceiling areas

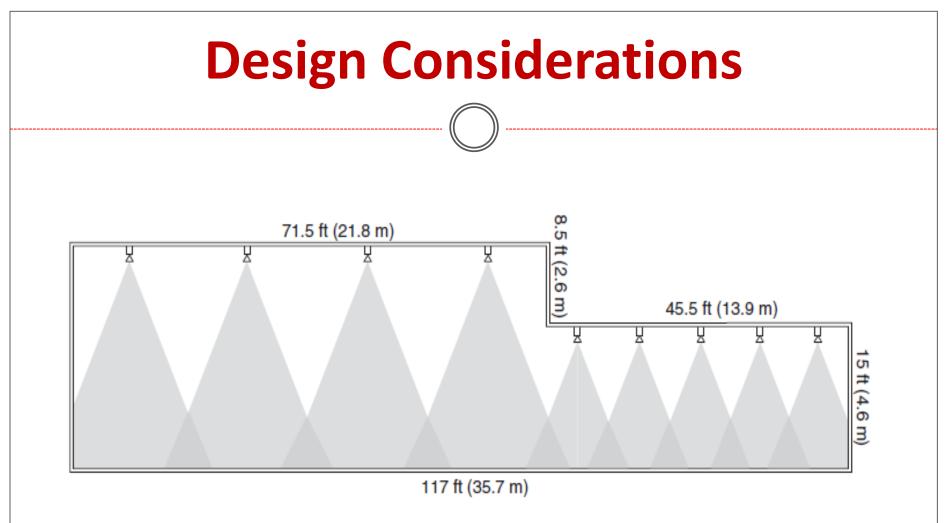
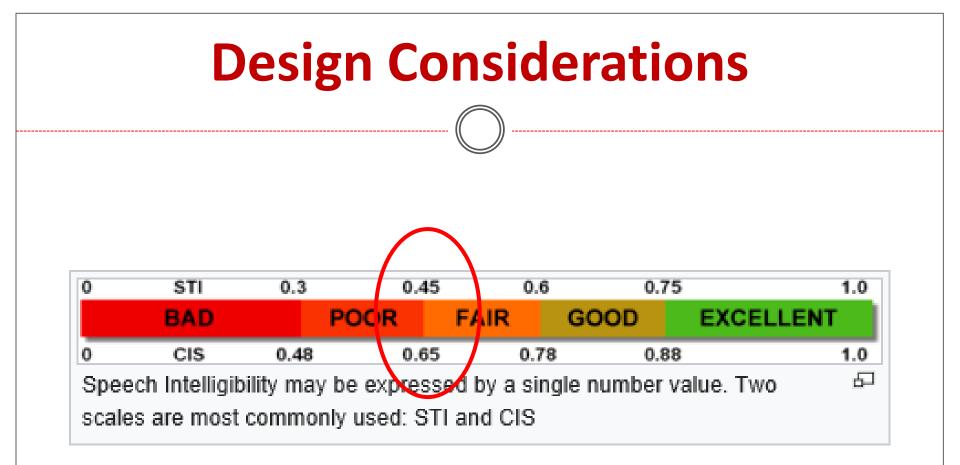


FIGURE D.2.3.1.7 Illustration Demonstrating Effect of Ceiling Height. (Source: R. P. Schifiliti Associates, Inc.)

- ADS should be consistent in size and furnishings
- A change in materials/furnishings will likely separate one ADS from another
 - O Change from carpet to hard tile
 - Consistent sound sources (decorative waterfalls, large glassed in areas, etc.)
- Corridors and stairwells will typically be individual ADS

- Certain ADS may require higher bandwidth speakers in order to achieve intelligibility
 - Large open areas can be challenging to maintain intelligibility and avoid reverberation
 - Reverberation (voice messages bouncing off objects in the room) can be very problematic for voice intelligibility.



- From a design perspective, use caution using higher bandwidth speakers unless necessary to overcome certain acoustical or ambient conditions
 - Higher bandwidth speakers will require more power
 - This will increase the amplifier, wire size and power supply requirements (\$\$\$)

- Intelligibility is considered acceptable when 90% of the measurement locations within each ADS have:
 - Speech transmission index (STI) of not less than
 0.45
 - Average STI of not less than 0.50
 - Another method is known as the Common Intelligibility Scale (CIS)

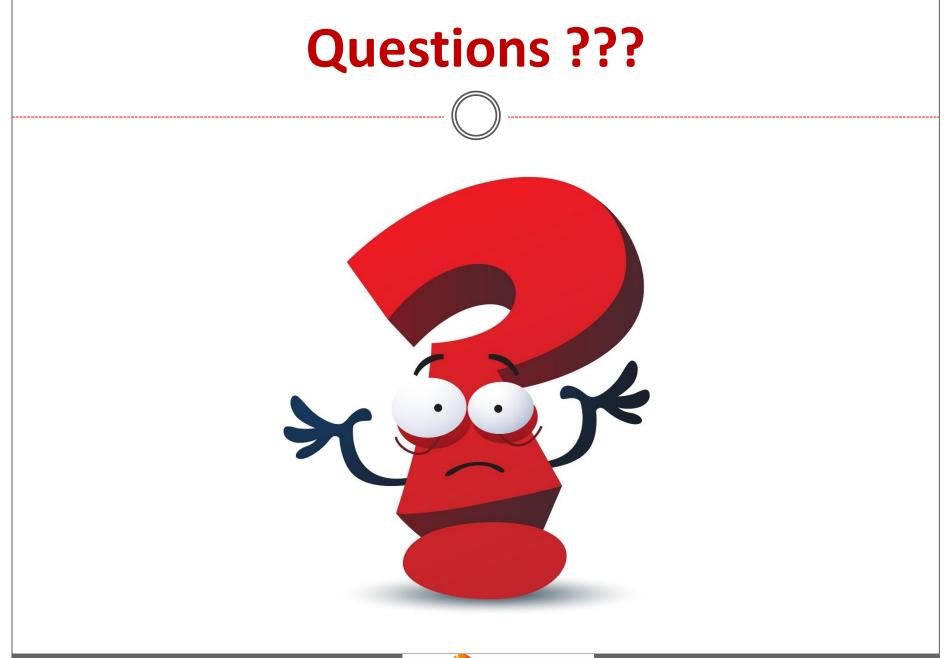
- Buildings or areas in buildings with high ambient noise levels may be impossible to provide intelligibility
- Areas where sound pressure level exceeds 90 dBA, speech transmission and intelligibility can be challenging
- Consider alternate communication methods such as signs, displays or horn/strobes
- Remember...the intent is to provide occupant notification

Speech Intelligibility Testing

- Two methods for testing speech intelligibility:
 - OSubject (human) based testing
 - OInstrument based testing

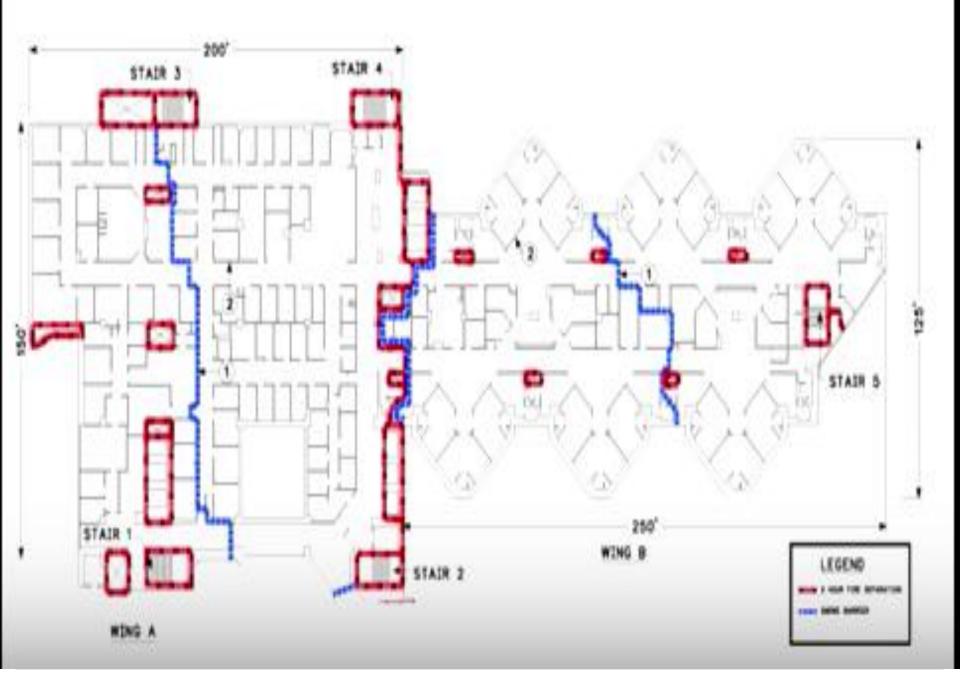
Speech Intelligibility Testing

- Construction in the building or area being tested should be completed to receive accurate intelligibility readings
- Construction and interior design features
 WILL have an impact on sound and speech transmission
 - Lack of ceiling tiles in place
 - ○Carpet on walls



Speech Intelligibility Testing

- For additional design and testing considerations, please see Annex D in NFPA 72
 - ○Annex D Speech Intelligibility


Occupant Notification Systems FIRE FIR

Notification Signal

- The type of notification signal must match the evacuation scheme for the facility:
 - •Total evacuation,
 - Zoned evacuation,
 - Occupant relocation,
 - Defend in place strategies.
- Notification zones shall be consistent with the emergency response or evacuation plan for the protected premises.

Chapter 18 – Notification Appliances

- The use of the T3 pattern shall only be used where evacuation of the building or relocation inside the building is desired.
- The T3 signal shall <u>not</u> be used where occupants are practicing defend-in-place.

Notification Signals - Types

- Public Mode (most common):
 - OGeneral evacuation signal,
- Private Mode:
 - OAttendant signal:
 - No evacuation signal,
 - Usually a coded voice message or chimes.

Chapter 18 – Notification Appliances

• 18.3.3 Physical Construction

18.3.3.2 Notification appliances used for other purposes than fire cannot say "FIRE" on them.

Audible Alarm Synchronization

- Section 18.4.2.4-The three-pulse temporal pattern must be synchronized throughout the evacuation zone.
 - Synchronization is necessary to preserve the temporal 3 pattern.

Sound Levels – Public Mode

- 15 dBA above average ambient sound; or,
- 5 dBA above average ambient sound level lasting 60 seconds
- If ambient sound level is greater than 105 dBA, visual notification appliance is required,

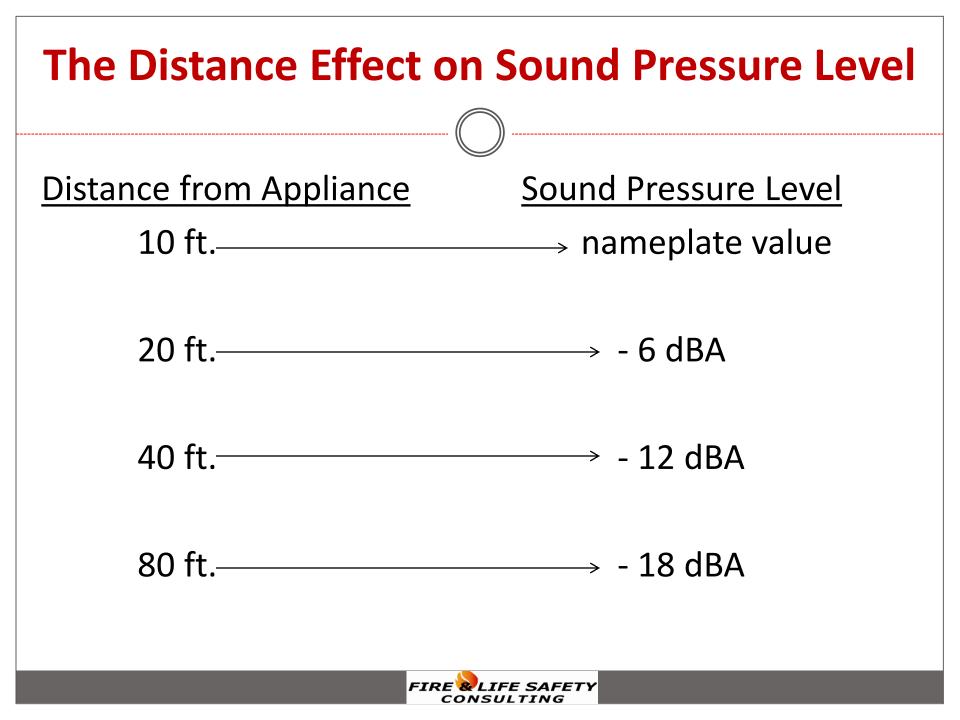
Sound Levels – Public Mode

110 dBA is maximum allowed

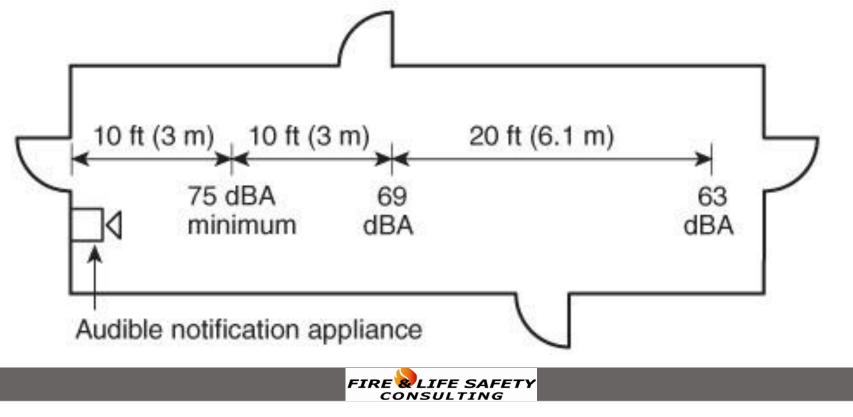
TABLE A.18.4.3 Average Ambient Sound Level According to Location

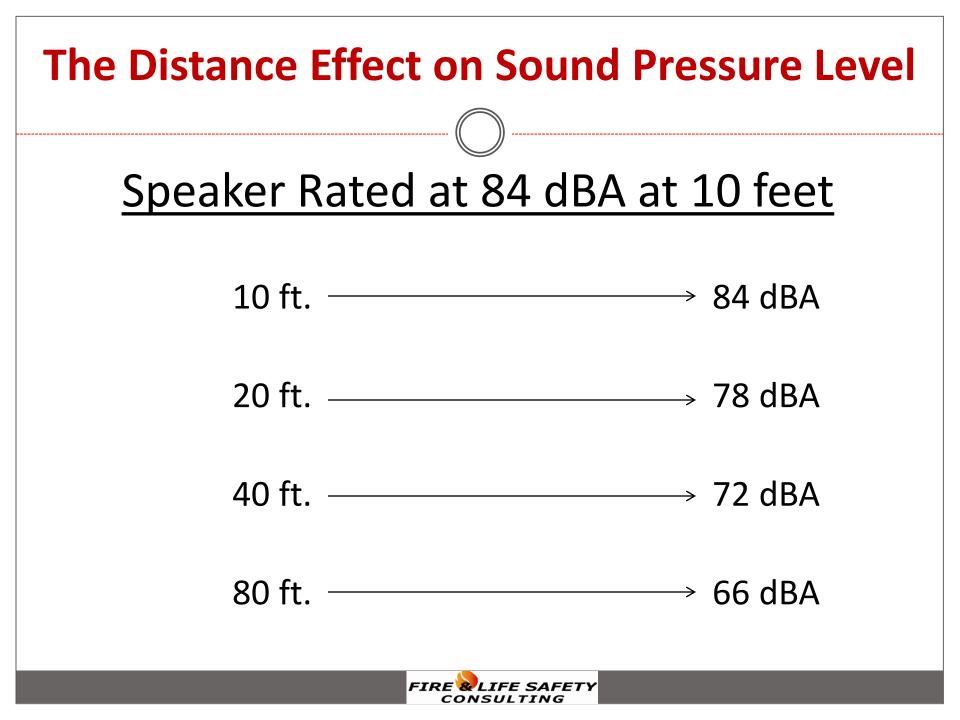
Location	Average Ambient Sound Level (dBA)
Business occupancies	55
Educational occupancies	45
Industrial occupancies	80
Institutional occupancies	50
Mercantile occupancies	40
Mechanical rooms	85
Piers and water-surrounded structures	40
Places of assembly	55
Residential occupancies	35
Storage occupancies	30
Thoroughfares, high-density urban	70
Thoroughfares, medium-density urban	55
Thoroughfares, rural and suburban	40
Tower occupancies	35
Underground structures and windowless buildings	40
Vehicles and vessels	50

Protective Covers


- Protective covers used with notification appliances must be listed for the particular device.
 - Ounlisted equipment can degrade the effectiveness of the audible signal or visible

strobe.



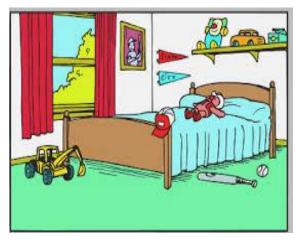


The Distance Effect on Sound Pressure Level

• Rule of Thumb is the output of an audible appliance is reduced by 6 dB if the distance between the appliance and the listener is doubled.

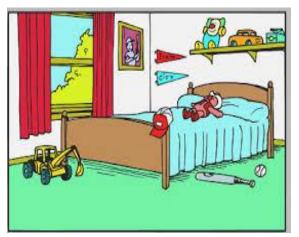
The Walls and Doors Effect on Sound

The Effect of Walls and Doors on Sound Transmission


	<u>Avg. Loss</u>	<u>Typical Range</u>
Open Door	8 dBA	4-12 dBA
Closed Door	17 dBA	10-24 dBA
Sealed Door	28 dBA	22-34 dBA
Stud Wall	39 dBA	32-42 dBA

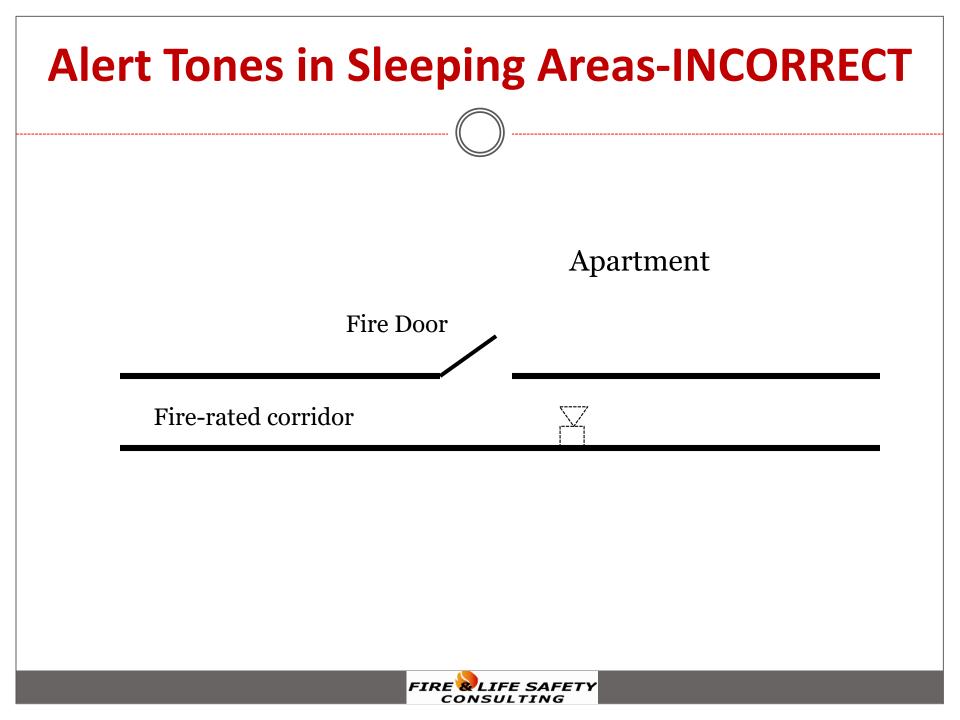
Source: NIST Handbook 119 "Quieting: A Practical Guide to Noise Control": D.A. Robinson, Univ. of MA, "Sound Transmission Loss From Corridors to Rooms: Implications for Locating Fire Alarm Sounders"

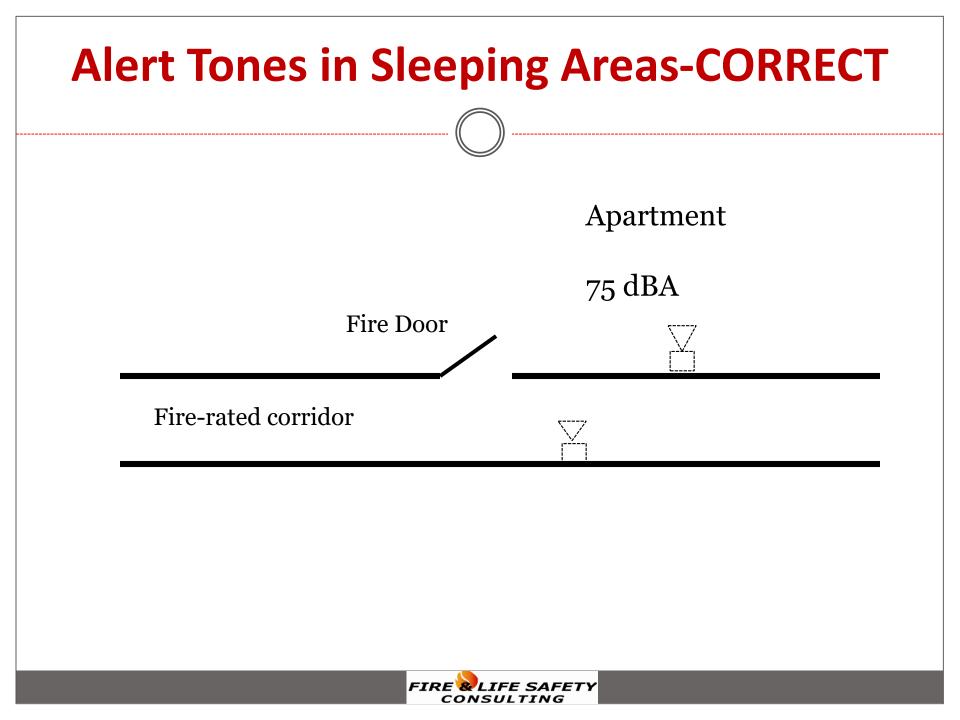
Sound Levels – Sleeping Areas


- Section 18.4.5
- 15 dBA above ambient average sound level,
- 5 dBA above maximum sound level (lasting 60 seconds), or
- 75 dBA minimum measured at pillow level
- Whichever is greater.
- This will usually require an appliance in the dwelling unit.

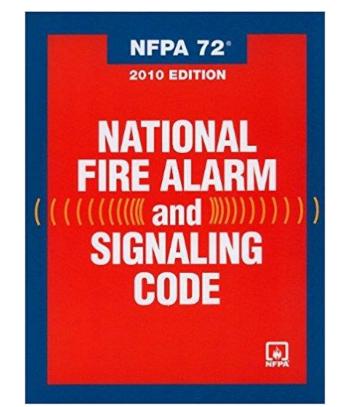
Sound Levels – Sleeping Areas

- Section 18.4.5
- 15 dBA above ambient average sound level,
- 5 dBA above maximum sound level (lasting 60 seconds), or
- 75 dBA minimum measured at pillow level
- Whichever is greater.
- This will usually require an appliance in the dwelling unit.


Alert Tones in Sleeping Areas



- Same for public and private operating mode
- 70 dBA min. 1999
- 75 dBA since 2002
- Remember, NFPA 72 is <u>not</u> a retroactive document
 - It is necessary to research the standard in effect at the time



Low Frequency Notification

- Requirement for low frequency notification first found in NFPA 72, 2010 edition.
 - Effective date of 1/1/14
 - Effective upon adoption for smoke alarms (chapter 29)

Low Frequency Alert Tone for Awakening

• 520 Hz Square Wave

Systems (Chapter 18) – effective January 1, 2014
Household (Chapter 29) – effective on adoption

Waking Effectiveness: High Risk Groups

-School aged children: Thirteen percent of civilian fire fatalities in residential buildings were under the age of 10 1

-Alcohol/drug impaired: It's suspected that over 27% of civilian fatalities in residential buildings are linked to alcohol, drug or chemical influence 1

-People with hearing loss: More than 34.5 million people in the US are hard of hearing ₂

Sources:

- 1. USFA, Civilian Fire Fatalities in Residential buildings 2008-2010 Report
- 2. Working Effectiveness of alarms for adults who are hard of hearing, NFPA Dorothy Bruck; Ian Thomas, June 2007

• Background:

OStudy done by Victoria (Australia) University

- Study tried to determine why people were not waking to the fire alarm signal
- Nearly 50% of the participants with mild to severe hearing loss slept through the 3000 Hz smoke alarm signal
- The higher 3000 Hz signal also was not as effective at waking children

• Background:

 In the 1970s and early 1980s standard horns were replaced with low-current and more efficient high frequency horns.

- When this happened some stated they couldn't hear the newer alarms as well.
- Both devices measured 85 decibels at 10 feet;
- The issue was the frequency, <u>not</u> the sound output.

- People with hearing loss have trouble hearing high frequencies than low.
- The 520 Hz square wave signal awoke nearly 100% of the participants in the test.
- Low frequency signal is 6-10 times more effective than the high frequency devices

- Due to the results from the Victoria University study, in 2006, the Fire Protection Research Foundation (FPRF) funded two additional research studies on the issue
 - studies on the issue Focus was on the effectiveness of the 3000 Hz tone on high risk groups
 - Waking effectiveness of alarms and adults who are hard of hearing
 - Waking effectiveness of alarms for the alcohol impaired

FPRF Study

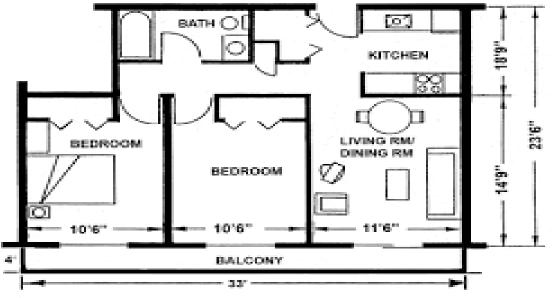
- The studies tested six signals:
 - 1. 400 Hz Square wave signal
 - 2. 520 Hz Square wave signal
 - 3. 3000 Hz pure tone (standard)
 - 4. Bed shaker (under mattress)
 - 5. Pillow shaker
 - 6. Strobe light in T-3 pulse

FPRF Conclusions

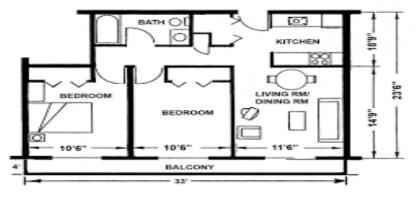
- The low frequency signal with a fundamental frequency of 520 Hz is the most effective signal for waking people.
 - Low frequency signal woke 92% between 55
 dBA and 75 dBA
 - 3000 Hz signal woke 56% between 55 dBA and
 75 dBA
- The low frequency signal is superior bed/pillow shakers and strobe lights.

In what occupancies will this apply?

- Low frequency sounders will be required for new fire alarm system installations in:
 - O Hotel/motels
 - \circ Assisted living
 - Dormitories
 - Apartments
- <u>Not</u> required in:
 - Hospitals*
 - Nursing homes
 - Prisons
 - Child Care Centers



Question ???


 Are low frequency sounders required in the bedroom <u>and</u> the common areas of a dwelling/sleeping unit or just the bedrooms?

Question ???

- A.18.4.5.2 (13)-The intent of this section is to require the low frequency signal in areas used for sleeping <u>and areas that might reasonably be</u> <u>used for sleeping</u>.
- This would require low frequency in the bedroom <u>and</u> the living room area.

- Section 18.5.4-Wall mounted <u>visible</u> appliances shall be not less than 80 inches and not greater than 96 inches above the finished floor
- Performance-based design option for spacing and location

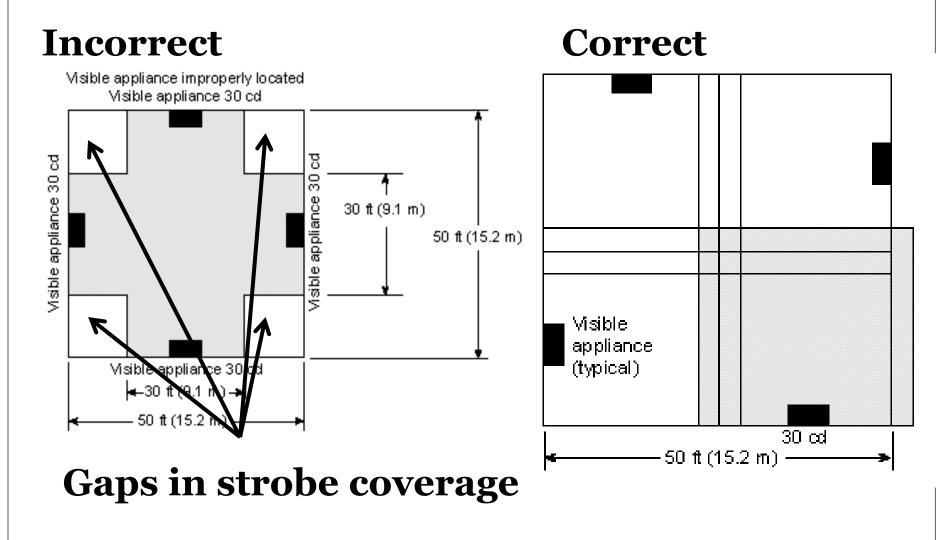
Must be designed by a licensed engineer

 Number and placement depends on the room size and light output of the strobe

Visible Appliances-Wall Mounted

TABLE 18.5.5.4.1(a) Room Spacing for Wall-Mounted Visible Appliances

Maximum Room Size		Minimum Required Light Output [Effective Intensity (cd)]		
ft	m	One Light per Room	Four Lights per Room (One Light per Wall)	
20×20	6.10×6.10	15	NA	
28×28	8.53×8.53	30	NA	
30×30	9.14×9.14	34	NA	
40×40	12.2×12.2	60	15	
45×45	13.7×13.7	75	19	
50×50	15.2×15.2	94	30	
54×54	16.5×16.5	110	30	
55×55	16.8×16.8	115	30	
60×60	18.3×18.3	135	30	
63×63	19.2×19.2	150	37	
68×68	20.7×20.7	177	43	
70×70	21.3×21.3	184	60	
80×80	24.4×24.4	240	60	
90×90	27.4×27.4	304	95	
100×100	30.5×30.5	375	95	
110×110	33.5×33.5	455	135	
120×120	36.6×36.6	540	135	
130×130	39.6×39.6	635	185	


NA: Not allowable.

Visible Appliances-Ceiling Mounted

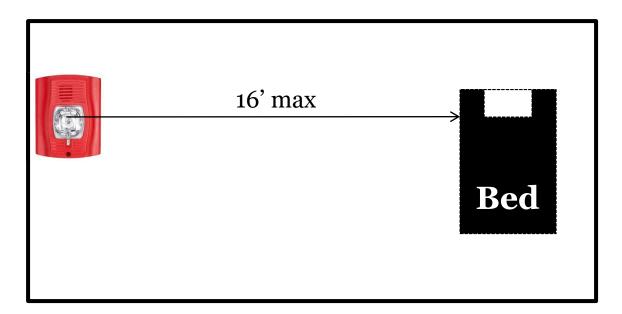
TABLE 18.5.5.4.1(b) Room Spacing for Ceiling-Mounted Visible Appliances

Maximum Room Size		Maximum Lens Height*		Minimum Required Light
ft	m	ft	m	Output (Effective Intensity); One Light (cd)
20×20	6.1×6.1	10	3.0	15
30×30	9.1×9.1	10	3.0	30
40×40	12.2×12.2	10	3.0	60
44×44	13.4×13.4	10	3.0	75
20×20	6.1×6.1	20	6.1	30
30×30	9.1×9.1	20	6.1	45
44×44	13.4×13.4	20	6.1	75
46×46	14.0×14.0	20	6.1	80
20×20	6.1×6.1	30	9.1	55
30×30	9.1×9.1	30	9.1	75
50×50	15.2×15.2	30	9.1	95
53×53	16.2×16.2	30	9.1	110
55×55	16.8×16.8	30	9.1	115
59×59	18.0×18.0	30	9.1	135
63×63	19.2×19.2	30	9.1	150
68×68	20.7×20.7	30	9.1	177
70×70	21.3×21.3	30	9.1	185

*This does not preclude mounting lens at lower heights.

Visible Strobes – Sleeping Areas

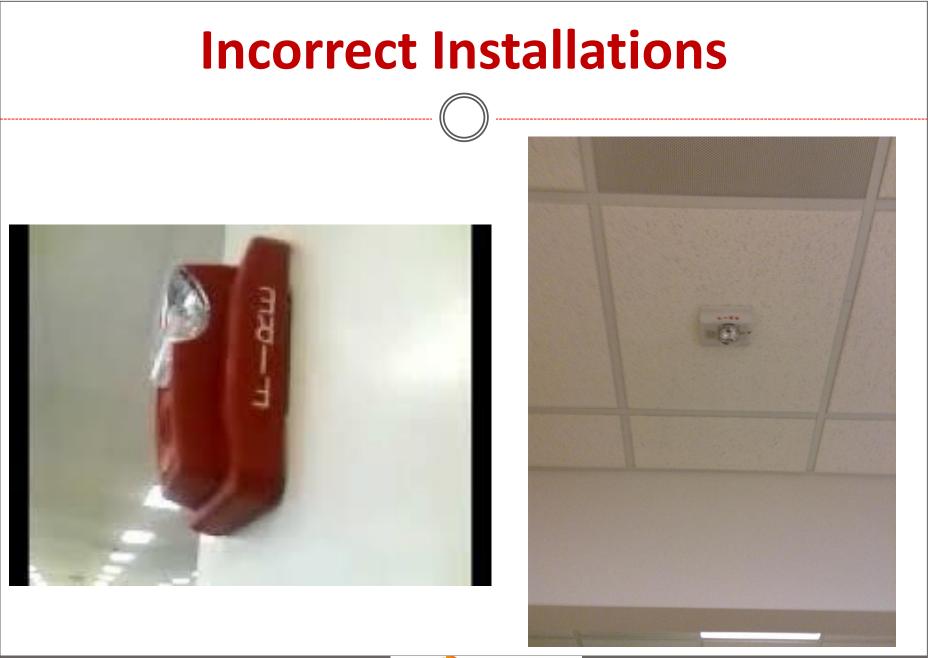
- Visible appliances ≥ 24["] from the ceiling must be rated for a minimum of 110 cd
- Visible appliances < 24" from the ceiling must be a minimum of 177 cd rating

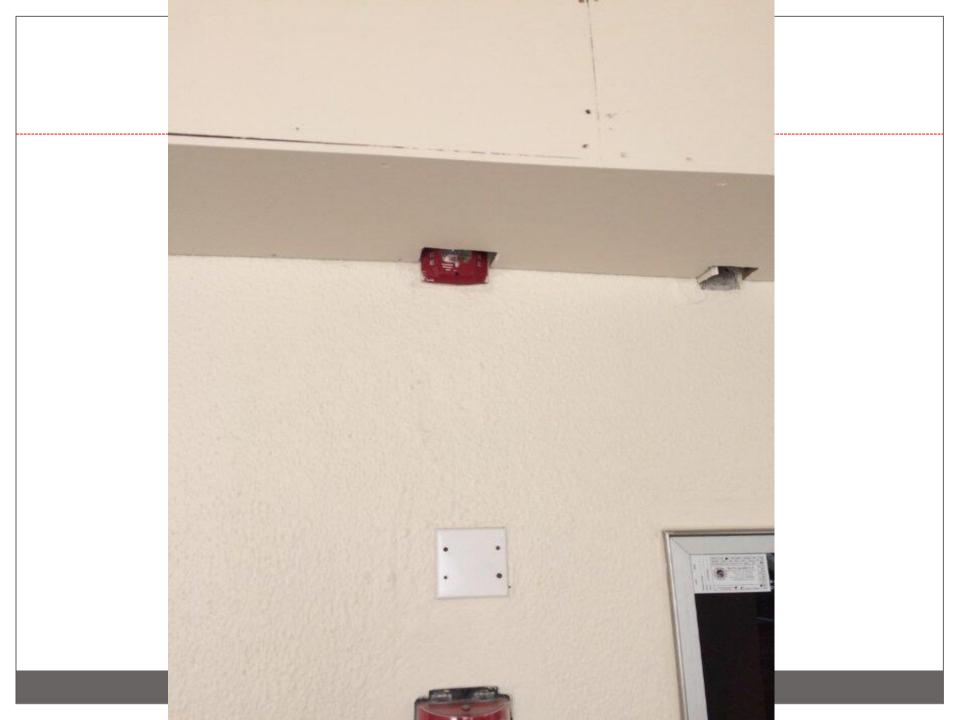

TABLE 18.5.5.7.2 Effective Intensity Requirementsfor Sleeping Area Visible Notification Appliances

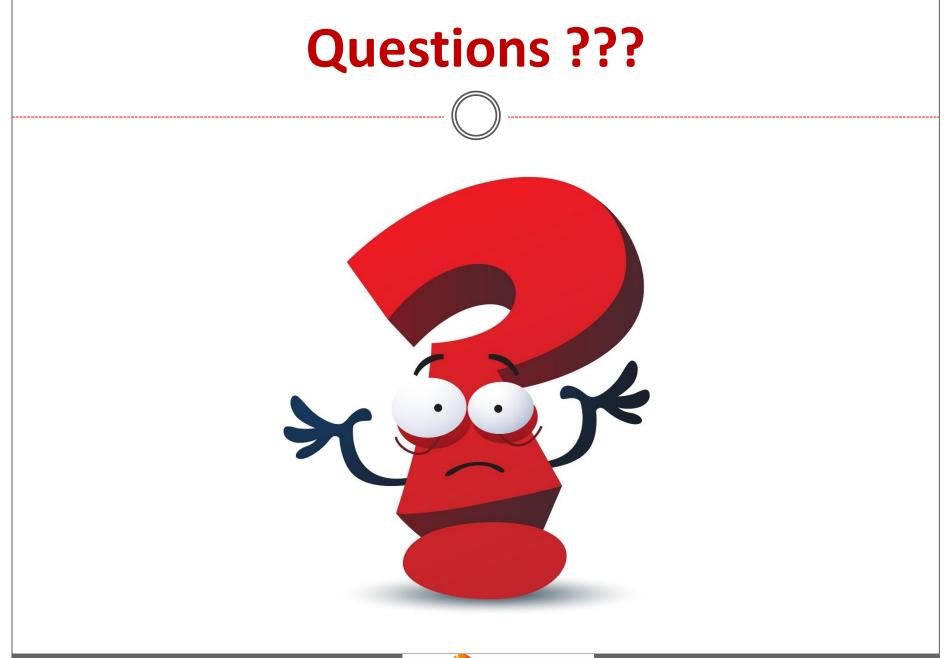
in.	mm	Intensity (cd)
≥24	≥610	110
<24	<610	177

Visible Appliances-Sleeping Areas

 Rooms greater than 16 feet in any dimension shall have a visual appliance within 16 feet of the pillow.




Visible Strobes


- Visible appliances are installed in one of two orientations:
 - \circ Wall mounted
 - Ceiling mounted
- Strobes are listed for a certain orientation and cannot be used interchangeably.
 Wall mounted strobes cannot be mounted on the ceiling or vice versa.

