Menu

Welcome

The Finest Supporting the Bravest!

The purpose of the Fire Mechanics Section is to promote standardization of fire apparatus and equipment preventative maintenance, improve safety standards and practices, promote workshops, conferences, and seminars related to the purposes of this Section, and to promote cost savings through standardization of building and equipment purchasing and maintenance.

RECENT FIRE MECHANIC NEWS

Posted: Apr 1, 2013

Bigger Pumps in Smaller Packages

Alan M. Petrillo

Pump manufacturers have responded to fire department requests for fire apparatus pumps that can flow plenty of water yet take up the least amount of space on their vehicles so any extra space saved can be dedicated to equipment storage or other uses.

Narrowing Pumps

Jon Moore, national sales manager for Hale Products Inc., says that his company's QMAX-XS-the XS stands for extra space-is a slimmed down version of its popular QMAX pump with the same flow characteristics and in the same versions that will generate from 1,250 to 2,000 gallons per minute (gpm).

Moore notes that the QMAX-XS takes a foot off the pump box with no loss of functionality. "The QMAX is our most reliable and largest selling pump," Moore says. "It's virtually indestructible and delivers very good performance. The XS version builds on those characteristics but in a smaller package that saves space on a vehicle and has many interchangeable parts with the QMAX."

Hale isn't a stranger to putting the most amount of performance into a smaller package, Moore notes. "We came out with the QPAK, a pump rated from 750 to 1,000 gpm, about 20 years ago and it was the original small pump for the fire service," he says. "This was the smallest version available of a fully manifolded midship pump."

The Waterous CXS end suction pump with ram's horns on the pump's inlet
(1) The Waterous CXS end suction pump with ram's horns on the pump's inlet allows the company to put a 1,500-gpm pump into a 28-inch-wide package when using electric discharge valves. (Photo courtesy of Waterous.)

He adds that the QPAK can be run off of a J gearbox for a left or right power takeoff (PTO) or off of a standard G gearbox for a split-shaft midship drive off the vehicle's transmission. "QPAK is a very slim pump that sets up well for smaller chassis and for tankers where you want a smaller pump box," Moore says. "It also works well in smaller brush trucks. It's the original pump that started the series of narrow pumps we have out now, like the QMAX-2 and the QFLO."

Bruce Senn, Hale's Southeast regional sales manager, says Hale also makes the Sidekick, a pump available in the 500- to 1,500-gpm range but that doesn't require a conventional pump box. "Sidekick fits in a compartment and can be narrowed down to 24 inches wide," Senn says. "It's great for rescues and tankers. The pump is available as both a package and a kit that bolts to the side of the frame rail and works with several different models of pumps."

The S101 end suction pump made by Waterous
(2) The S101 end suction pump made by Waterous uses schedule 10 stainless steel plumbing and can fit into a 38-inch pump house for a 1,500-gpm model. (Photo courtesy of Waterous.)

End Suction

Paul Darley, president and chief executive officer of Darley, says the fire industry has seen a strong move away from big midship fire pumps and toward end suction pumps. "End suction allows an apparatus builder or pump manufacturer to custom design the pump manifolds-the suction and discharge manifolds-which can free up a lot of space in the pump compartment that can be put to other uses."

Darley says one of the key driving forces in putting bigger pumps in smaller packages is the freeing up of space on fire apparatus for other uses. "The second key is the availability of large or full torque PTOs, and the third key is pricing,"

Read more
Posted: Apr 1, 2013

Review of CAN/ULC- S515-12 Standard for Automobile Fire Fighting Apparatus

By Jeff Aiken
Pierce Manufacturing

It is probably safe to say that just about everyone active in the North American firefighting and emergency services community is aware of National Fire Protection Association (NFPA) standards and revisions that are published on a regular basis. What are not yet on everyone's radars are the parallel standards and revision processes that occur within the Canadian firefighting and emergency services community.

The last major ULC-S515 revision was published in 2004 and was written to align closely with NFPA 1901, Standard for Automotive Apparatus (2003 ed.). ULC-S515 has been undergoing a revision cycle to bring it in alignment with the NFPA 1901 (2009 ed.). ULC-S515-12 has been through the public comment period, the French translation work is complete, and it should be published shortly.

Differences

In looking at NFPA 1901 and ULC-S515-12, there are a number of differences to note. The lists of referenced documents and standards and their respective revisions are not identical. Canada has established the metric SI system as the primary system of measurement. This is significant in that the metric SI unit is the requirement-any units in brackets are considered approximate. Gallons and gallons per minute (gpm) refer to imperial gallons. Any references to United States gallons are noted as "US-gal" or "USgpm."

By law, all Canadian standards must be published in both French and English. So, when a fire department in French-speaking Quebec reads the standard differently than a fire department in British Columbia, it can, quite literally, be a matter of interpretation.

Changes

There are a number of changes and new chapter additions for this latest edition of ULCS515. The chapter for Industrial Supply Pumps and Associated Equipment of the 2004 edition of CAN/ULC-S515 has been incorporated into Chapter 15-Fire Pumps and Associated Equipment of the 2012 edition. There is no longer a separate chapter for Industrial Supply Pumps.

Other chapter changes include Chapter 18-Foam Proportioning Systems, aligned closely with NFPA 1901 (2009 ed.) Chapter 20; Chapter 19-Compressed Air Foam Systems, aligned closely with NFPA 1901 (2009 ed.) Chapter 21; Chapter 20-Line Voltage Electrical Systems, aligned closely with NFPA 1901 (2009 ed.) Chapter 22 but note the primary reference to the Canadian Electrical Code, not the National Electrical Code; Chapter 21-Command and Communications, aligned closely with NFPA 1901 (2009 ed.) Chapter 23; Chapter 22-Air Systems, aligned closely with NFPA 1901 (2009 ed.) Chapter 24; Chapter 23-Winches, aligned closely with NFPA 1901 (2009 ed.) Chapter 25; and Chapter 24-Trailers, aligned closely with NFPA (2009 ed.) Chapter 26.

Data tables for friction loss, miscellaneous equipment, suction and discharge sizes, and flow rates are all located at the back of ULC-S515 instead of in their respective chapters, as in NFPA 1901.

There are no informational annexes, as in NFPA 1901. These resources for firefighters will be developed in the future by ULC Standards but have not been included in this edition. ULC-S515-12 does have an Appendix A on Limiting Design Stresses. This appendix provides direction and equations to be used in aerial device structural design. The safety factor equation used by ULC-S515-12 is not identical to that used by NFPA 1901, so aerial manufacturers need to be aware of this difference.

Aerial Stability Testing

This latest edition of ULC-S515-12 introduces new language covering stability testing requirements for aerial devices with envelope control, or "Limited Reach Operating Envelope Aerials" as they are referred to in the standard. This new language is contained in Chapter 17-Aerial Devices in Section 17.13-Tests. Manufacturers, testing and certification companies, and end users need to review t

Read more
Posted: Apr 1, 2013

Diesel Engines Meet Size, Power, and EPA Challenges

Alan M. Petrillo

Diesel engine manufacturers are developing engines that generate more horsepower (hp) from the same or smaller size units, all while running cleaner to reduce or remove emissions and to more efficiently provide the most power for vehicle operations.

Diesel Technology

Dave Drehobl, manager of specialty vehicle business for Cummins Inc., says the evolution of technology over the years has radically changed diesel engines used in fire apparatus. "The first emissions regulations dealt with smoke and then nitrogen oxides (NOx)," Drehobl notes. "But, these days unburned hydrocarbons, oxides of nitrogen, and particulates are at near-zero-emission output levels in diesel engines."

He says that in 2002 the industry was first introduced to exhaust gas recirculation (EGR), which lowered NOx levels. "Engines today continue to use cooled EGR," he observes. In 2007, the industry was introduced to the diesel particulate filter (DPF), Drehobl says, which brought on the need for both passive and active regeneration. Most recently in 2010, the industry added selective catalytic reduction (SCR) with diesel exhaust fluid (DEF) to its diesel engines.

ISL-9 engine
(1) Cummins offers the ISL-9 engine, compliant with EPA 2010 emission regulations, which features the XPI fuel system, enhanced cooled EGR, a single VGT turbocharger, selective catalytic reduction, and Cummins particulate filter. (Photo courtesy of Cummins.)

"With greenhouse gas fuel efficiency regulations in front of us," Drehobl says, "what's happening now is the integration of onboard diagnostics (OBD) into engines, something that has been around since the late 1990s in cars and light trucks."

Cummins uses an engine control module (ECM) running OBD software in the background that monitors the engine in a real-time diagnostic mode to identify if there is any engine system malfunction, Drehobl says.

He points out that the Environmental Protection Agency (EPA) and the California Air Resources Board expect that an engine will remain in compliance with coming greenhouse gas regulations as it operates. "Our engine control module accomplishes that task as it performs diagnostics on the engine, aftertreatment, cooling system, and the charged air system on the vehicle," Drehobl adds.

Because diesel engine emissions have been reduced to near-zero levels, regulators are now focusing on improving fuel economy, and greenhouse gases and fuel economy work hand in hand. "Greenhouse gas rules regulate the carbon dioxide (CO2) output from the engine," Drehbol points out, "and when you lower carbon dioxide emissions, the engine consumes less fuel and the miles per gallon improve."

ISX-12 engine
(2) The ISX-12 engine made by Cummins was designed to deliver better fuel economy, performance reliability, and durability in a compact design that could save space on fire apparatus. (Photo courtesy of Cummins.)

Durable with Less Weight

Creighton Pritzlaff, Navistar's vocational sales manager for the North American fire and emergency segment, says Navistar offers its own brand of engines in commercial chassis in a range that includes the Maxxforce-7, Maxxforce-11, and Maxxforce-13 engines. The Maxxforce-13 is available in a 475-hp rating (1,700 foot pounds of torque), two 450-hp ratings (1,700 foot pounds of output and multitorque output of 1,550/1,700 foot pounds), as well as a 430-hp r

Read more
Posted: Apr 1, 2013

Reliable Apparatus

By Richard Marinucci

The goal of the fire service is to provide the best possible service every time. There is an expectation of "A" performance from the people who call 911. Organizations cannot provide top-shelf service without the reliable apparatus. This means that the vehicles are in service almost all the time, and when they need service or repair the time out of service is minimal. There is also an expectation that the vehicle will last many years. It must function just as well in its last year as its first.

Setting the Standard

The Cadillac brand has been associated with excellence to the point that it is used to identify other products that have a sterling reputation. You may have heard someone say that a particular brand is the "Cadillac" of that line of products, or you may have even said it yourself. What is being said is that something is reliable and dependable to the point that it exceeds the norm or average within an industry. It does not necessarily mean that it was the least expensive or cheapest. The implication is that if you can afford the particular product, you won't be disappointed in its performance. You will also be getting the state of the art within the industry.

Along with the perception that you are getting a top-shelf product, you are getting follow-up service that is also exceptional. I have a friend who works for Cadillac, and one of his roles is to respond to calls for roadside assistance. Within a certain period of time after a purchase or lease, the owner receives free service should something go wrong. This can be for something wrong with the vehicle or something the owner did. The service includes jumping a battery, even if the owner left the lights on; fixing a flat tire, even if the driver rode over a pile of nails; and even gasoline if the owner disregarded the warning that the vehicle was getting low on fuel.

General Motors and Cadillac have found a niche in the market that is willing to pay for a better, more reliable automobile that comes with follow-up service. I know there are other luxury vehicles and companies that do the same. The point is that some people think it is important to have this added value. Although it is charging for this, Cadillac certainly wants to minimize its service calls because the more it responds, the more it pays. It also risks an impact on its reputation. Another thing to note is that the company does not care what causes the problem, it just fixes it. It doesn't blame various suppliers for things that go wrong; it just makes it right for the customer.

I have been asking various people in the fire service what vehicle they would buy if price was not a factor. This has not been a scientific poll by any stretch of the imagination. I have asked people from different parts of the country, but that is about the extent of my attempts to be random. The results have varied. I have not had any particular manufacturer identified as being the Cadillac of fire apparatus-be it engines, ladders, rescues, ambulances, or whatever else comes to mind. I am not sure how this affects my future decisions regarding the acquisition of apparatus, but it can get me thinking about issues that I need to consider further with respect to reliability, service, and cost.

Apparatus Acquisition

Acquiring fire apparatus is not the same as buying a car. In most cases, specifications are drafted and the buyer gets to request different components. Fire departments can choose the chassis, engine, pump, tires, water tank, and anything else they want to specify. Following the same discussion from earlier, which of the individual components would be considered the Cadillac? Which ones would be considered the most reliable with the best follow-up service? Many times fire departments can specify the components they desire, regardless of price. Rarely would a fire department bid be quest

Read more
RSS
First47214722472347244725472747294730

Theme picker

Upcoming Events

Theme picker

Sponsors

Fire Mechanics Section Board

Chair

Posted: Oct 21, 2015

Chair

Elliot Courage
North Whatcom Fire & Rescue
Read more

Vice Chair

Posted: Oct 21, 2015

Vice Chair

Mike Smith 
Pierce County Fire District #5
Read more

Secretary

Posted: Oct 21, 2015

Secretary

Greg Bach
South Snohomish County Fire & Rescue
Read more

Director #1

Posted: Oct 21, 2015

Director #1

Doug Jones
South Kitsap Fire & Rescue
Read more

Director #2

Posted: Oct 21, 2015

Director #2

Paul Spencer 
Fire Fleet Maintenance LLC
Read more

Director #3

Posted: Oct 21, 2015

Director #3

Jim Morris
Mountain View Fire Department
Read more

Director #4

Posted: Oct 21, 2015

Director #4

Arnie Kuchta

Clark County Fire District 6

Read more

Director #6

Posted: Oct 21, 2015

Director #6

Brett Annear
Kitsap County Fire District 18
Read more

Director #5

Posted: Oct 21, 2015

Director #5

Jay Jacks
Camano Island Fire & Rescue
Read more

Legislative Representative

Posted: Oct 21, 2015

Legislative Representative

TBD
TBD
Read more

Immediate Past Chair

Posted: Oct 20, 2015

Immediate Past Chair

Brian Fortner
Graham Fire & Rescue

Read more
RSS

Theme picker

2020 CAR SHOW